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Rise of Diffusion Models
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Text-to-Video Models at Luma




Why are Diffusion and Flow Matching so Good?

Data Prior

stic process

. Not known in closed form!

* Simple L2 loss > stable and scalable!



Problems of Diffusion and Flow Matching

dx; = u,dt (probability-flow ODE)
NOT optimal in utilizing network capacity.

ODE simulation error

Slow inference

ldeal case: one- or few-step mapping from prior to data.

Refinement Steps

(efficient inference-time scaling)



Towards Efficient Inference-Time Scaling

Diffusion Pretrain
+ Step Distillation

Problems:
e Canbeunstable

* Too many models and additional
engineering complexities

Single-Stage Pretraining

Consistency Training

MeanFlow

Inductive Moment Matching

Terminal Velocity Matching

This talk



Desiderata of Efficient Inference-Time Scaling

Training Stability

e = = = Our model

High-Quality
Samples



Problems with Diffusion Inference

 Want: Large jump in timesteps ENQF infirjpgesianail jy-hlosy ODE)
* Denoising Diffusion Implicit Models (DDIM)

e Euler under FM schedule

Xs = Xt T ua- . ‘ o Tt

e Linear w.r.t. s

Target time




Fixing the Capacity Issue

* |Inject s into the network

Xs = X¢ +uf (s —1
L (5 -

Before: U = u(Xy;t) After: U = Uu(X¢;t,s)

* Covers complex solutions
* ODE integration

* Can perform large time jump
(speeds up sampling)

Targei time

DDDDDDD




Desiderata of Efficient Inference-Time Scaling

Approach 2 Approach 1
Terminal Velocity Matching Inductive Moment Matching

High-Quality Efficient
Samples Inference

ﬂ

Training Stablllty \
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Inductive Moment Matching

A Distribution-Matching Few-Step Method



Inductive Moment Matching

* Key components

Training Objective Training Target
Sample-based Inductive Learning.
Distribution Matching, e Mathematical induction to
*  Maximum Mean Discrepancy match the model’s own

(MMD) distribution
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1. Sample-based Distribution Matching

Data “ & Prior

/Uk/\/\j\/kj\/k_/vkj kJ LJ \

ds (Xs) qt (Xt)

A naive approach: Match in distribution

L”g,r. (Xs)

* Use MMD due to its stability

DDIM (w/ 2 timesteps)
Xs = Xt + Ug(s — 1)

We learn this DDIM mapping
12



Maximum Mean Discrepancy

Advantages: Empirical implementation:

* No adversarial training: * Multiple particles to estimate expectation
* GAN-like, optimal discriminator
chosen in RKHS

e Standard kernel functions:
* RBF, Laplace, etc. match all
moments
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2. Inductive Learning

ds (XS) QT(XT) qt (Xt)

ds (XS) e pg,r(xs) j ,U.- \
P (XM i di ' Hard!)
Ps,n\%s "TYHA MMW%e(steps)

Inductive assumption:

Match in distributionw/ MMD (Easy!)

Base case:
0 [\
ps,s(XS) = qs(Xs)
A~ DDIM (w/ 2 timesteps)
Py 4 (xs)
True regardless of 6 CRU AN
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An Intuition on Inductive Learning

Prior

JAVARWAVANAVARUAANY LA MY A VAN

gs (Xs) qt (Xt)

j. U \ s<r<t,

s =rwhentisclosetos
p?r(wr éﬁs (X‘v)

Base case:

pg,s(XS) = qs(Xs) N L

n?
True regardless of 0 Ps.t (Xt‘-*')
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An Intuition on Inductive Learning

Prior

/\J\/\/\J\/\JULJVLJ xJ xj 9

QS Xs QT XT‘ Qt Xt
Inductive assumptlon
Sy \/
Base case:
pg,s(XS) = qs(Xs)
True regardless of 8 ,fh, f
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An Intuition on Inductive Learning

Prior

qs(xs) ar(xr)  qe(Xt)

Inductive assumption:

s(xs) = g,r(xs) AU E
e J\J\
£)

ps,?'(x-ﬂ)

I

Base case:
pg,s(xs) = QS(XS) N L
n?
True regardless of 0 *UH.-?‘»(X**')
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An Intuition on Inductive Learning

Prior

/\J\ /\/U\/\vawx J i J LJ 9

ds (Xs) dr (XT') qt (Xt)

Inductive assumption:
R IVIY /
Pe . (Xs)

Base case:

pg,s(xs) = qs(Xs) _/\_/ k

n?
True regardless of 6 Ps.t (Xﬁ)
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Stable Training

* Stable training as
long as >=4 particles

Inductive Moment Matching Consistency Model

* Consistency training
Is a 1-particle
special case
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Image Generation

* ImageNet-256x256

DiT (250-step) 2.27
SIT (250-step) 2.15
VAR-d20 2.57
VAR-d30 1.92
IMM (8-step) 1.99

(16-step) 1.90
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Scaling Property
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Relation to Other Works

* Consistency Training (2023)

* Particle number =1, L2 kernel

* Generative Moment Matching Networks (2015)
e t=1,s=r=0

* Generative Modeling via Drifting (2026)

* Drift field parameterized via MMD attraction + repulsion
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Limitations of IMM

* Multi-sample objective
e => difficult to scale to high-dimension

* Mapping function r (s, t) requires high precision (e.g. FP16)
* => |Large scale models require BF16 or lower
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Terminal Velocity Matching

Going Back to Flows



Intuition for Terminal Velocity Matching

Diffusion
t=0 t=1
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Learning One-Step Trajectory Mapping

£(x,, 1, 5) = / a(x,, r)dr Diffusion/FM
t

—

u(x;,t)
S
Xs =X+ [ u(xy,u)du
y t Xt
u(xg, s)

X1
X0
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Learning One-Step Trajectory Mapping

f(xt,t,s):/ u(x,., r)dr VM
t

£ (e, 1, 5) = [s — DFg(x:, 1, 5) .

Follows DDIM
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Learning One-Step Trajectory Mapping

]

* Displacemer e ” e (%, 7)dr

* Terminal Vel

Terminal Velocity
‘‘‘‘‘‘ -
One-step : L.
~ Not Kreérl#t in prefraining!
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Data Prior
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Time-augmented Interpolation

Minimize!
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Proxy for Ground-Truth

* Just use network itself as approximation
uQ(Xt T fG(Xta ¢, S)a 8) ~ u(Xt T f(Xta t, 8)7 S)

Terrible approximation at start of training!

» Solution: Train such that Ug(X¢,t) = u(X¢, 1) Flow Matching

* Final Objective:

s d
L£551(0) = Ex, x. v, ! —fp (x4, t,8) — wp(x¢ + fo(x4,t,5), )

ds

2

2 2
+ Hue(xs,S) — Vs }
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Relation to Distribution Divergence

* TVM loss bounds Wasserstein distance up to a constant

Network Lipschitzness

W3 (£10#Pt, o) Efﬂ )l[_() o (@)ds + C,

* Implication: diffusion transformers are NOT Lipschitz-
continuous. Need ”"semi-Lipschitz control”!

e Add RMSNorm without

 LayerNorm ->RMSNorm * QKNormw/ RMSNorm barameters to time modulation
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Calculating Terminal Velocity

e How to calc

 Recall: i

Data

‘‘‘‘‘

Time-augmented Interpolation

Prior
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Stable Training vs. MeanFlow

lel

* Well-conditioned - T Yeankioy
gradient profile s
..
" Taining Steps
* Well-conditioned || meorion
NOrM wug(x: + fo(x:,t,s), s) g
= 1.0
w/ random CFG 5 L
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Training Steps
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ImageNet Generation

« SOTA 1-NFE
* Qutperforms DiT, SiTin 4 NFE

One-step samples
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TVM at 1OB+ Scale

https://lumalabs.ai/blog/engineering/tvm

4-NFE
TVM
onT2l

* Challenges at Scale:

* FSDP with JVP - Solution: Wrap JVP inside each layer of FSDP.

* Writing JVP kernel (with backwards support) for arbitrary sequence length
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https://lumalabs.ai/blog/engineering/tvm

Desiderata of Efficient Inference-Time Scaling

Approach 2 Approach 1
Terminal Velocity Matching Inductive Moment Matching

High quality Efficient
Samples Inference

Training Stability

IMM, TVM .



Luma Al Is aresearch and product lab aiming
to build multimodal AGI.

* Recent Series-C: $900M.
* Average age in research team: ~27
* |nventors of DDIM & NeRF work here.

G infinite fl




If you are interested in advancing multimodal
generative Al, join us!

https://lumalabs.ai/join

Research team have multiple roles open around:

1.0mni models (unifying understanding + generation)
2.Video / Audio models

3.Voice agents

4.World models

5.Multimodal agents

6.Al Infra

(“Internships / Residency” also available, but ideally >= 6 months and not driven by
publications)
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