

Towards Efficient Inference-Time Scaling without Distillation

Linqi (Alex) Zhou

Rise of Diffusion Models

Transfer between Modalities:

Suppose we directly model $p(\text{text, pixels, sound})$ with one big autoregressive transformer.

Pros:

- image generation augmentation
- next level text rendering
- native in-context learning
- unified post-training

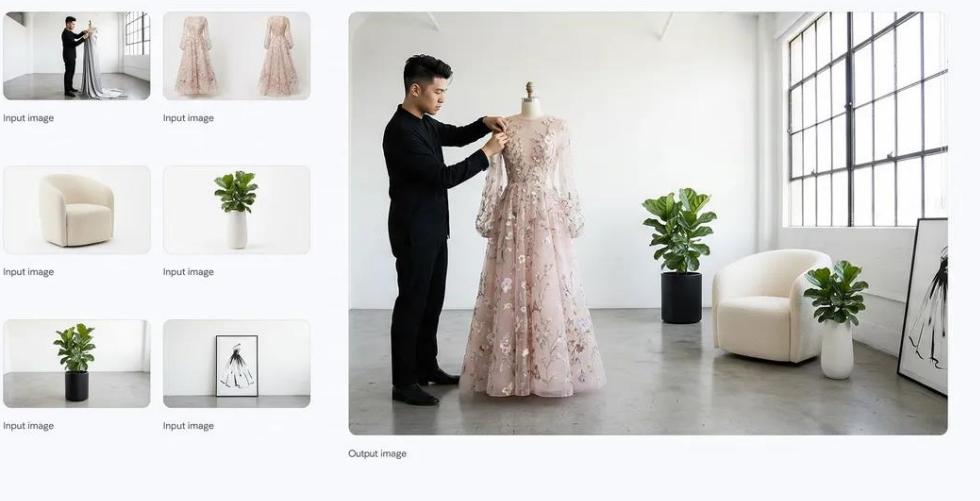
Cons:

- varying bit-rate of knowledge
- Compute not ada

Fixes:

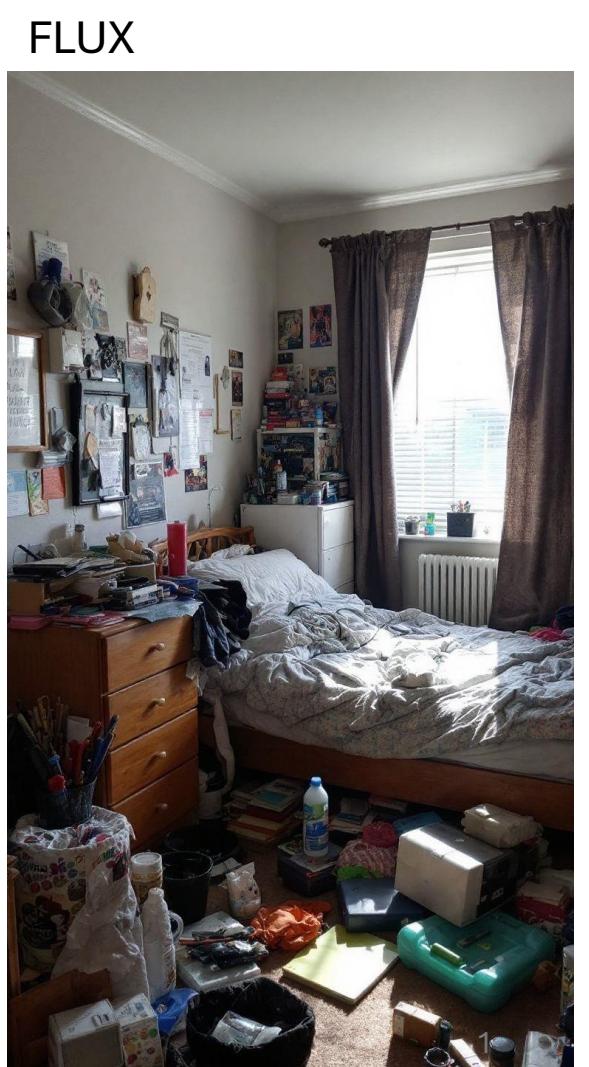
- = model compressed representations
- + compose autoregressive prior with a powerful decoder

okens → [transformer] → [diffusion]



Nano
Banana

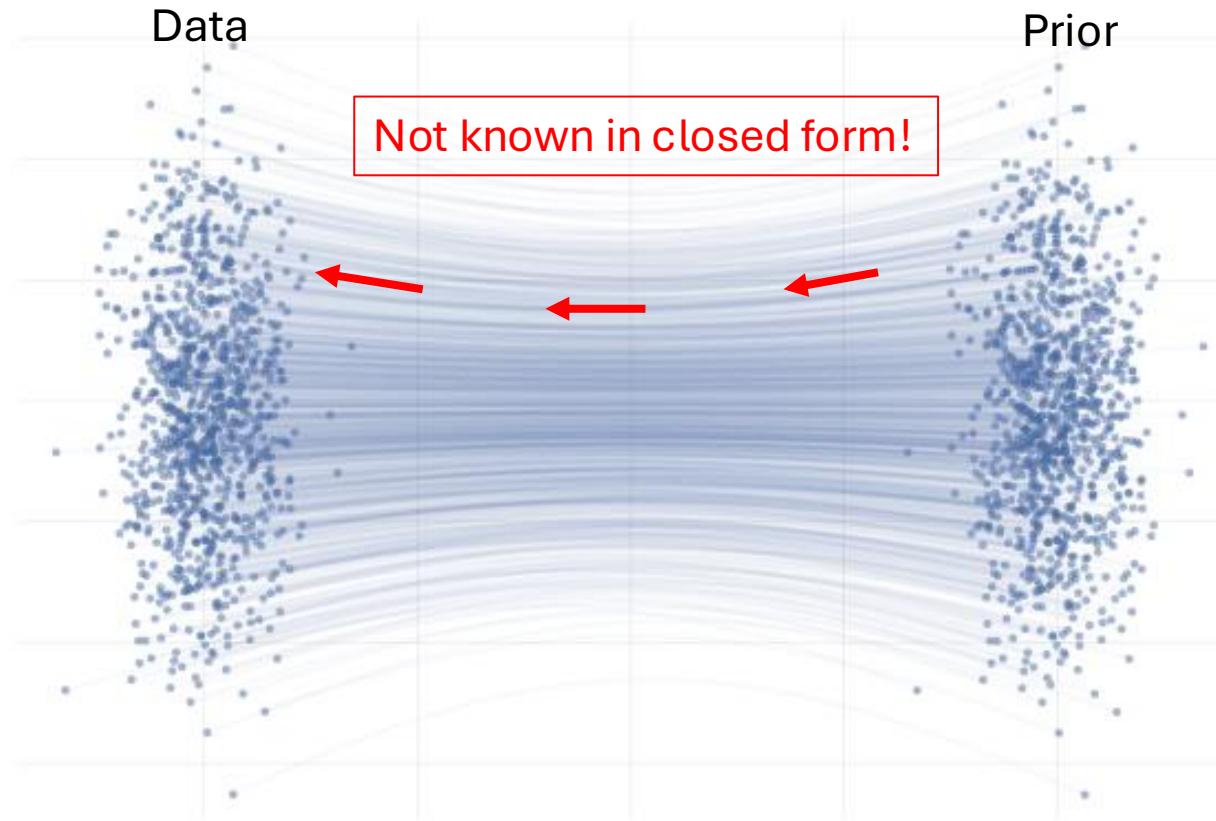
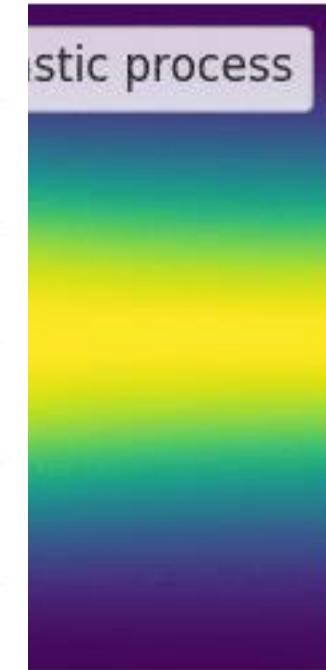
GPT-4o
Image



Text-to-Video Models at Luma

Luma
Ray 3

Why are Diffusion and Flow Matching so Good?



- Simple L2 loss → stable and scalable!

Problems of Diffusion and Flow Matching

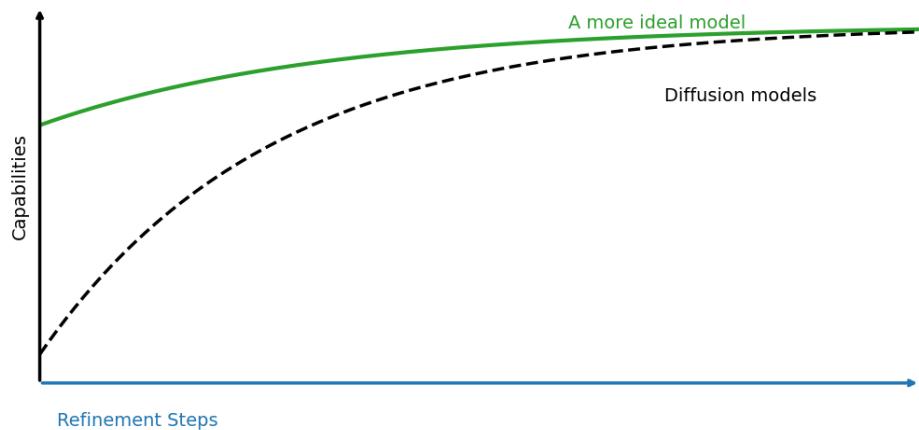
$$dx_t = u_t dt \quad (\text{probability-flow ODE})$$

NOT optimal in utilizing network capacity.

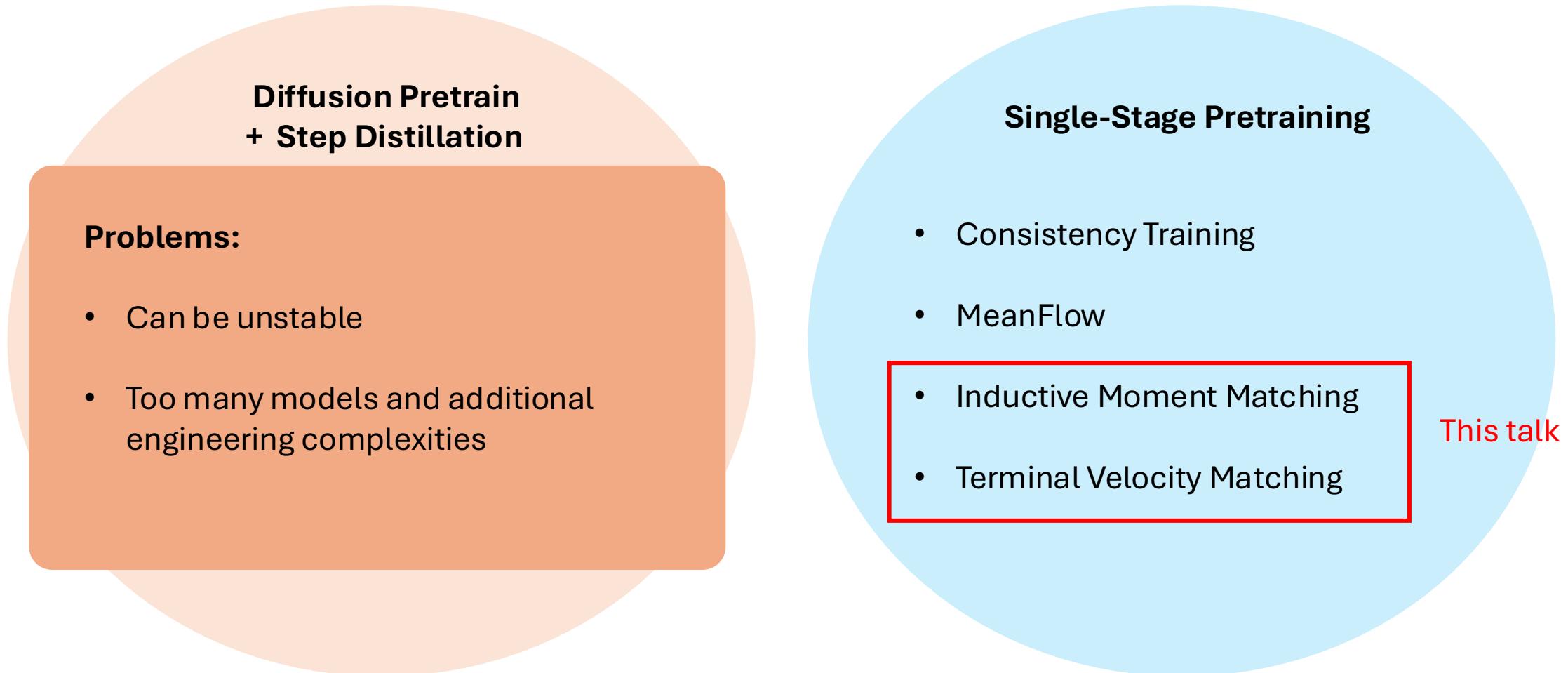
ODE simulation error

Slow inference

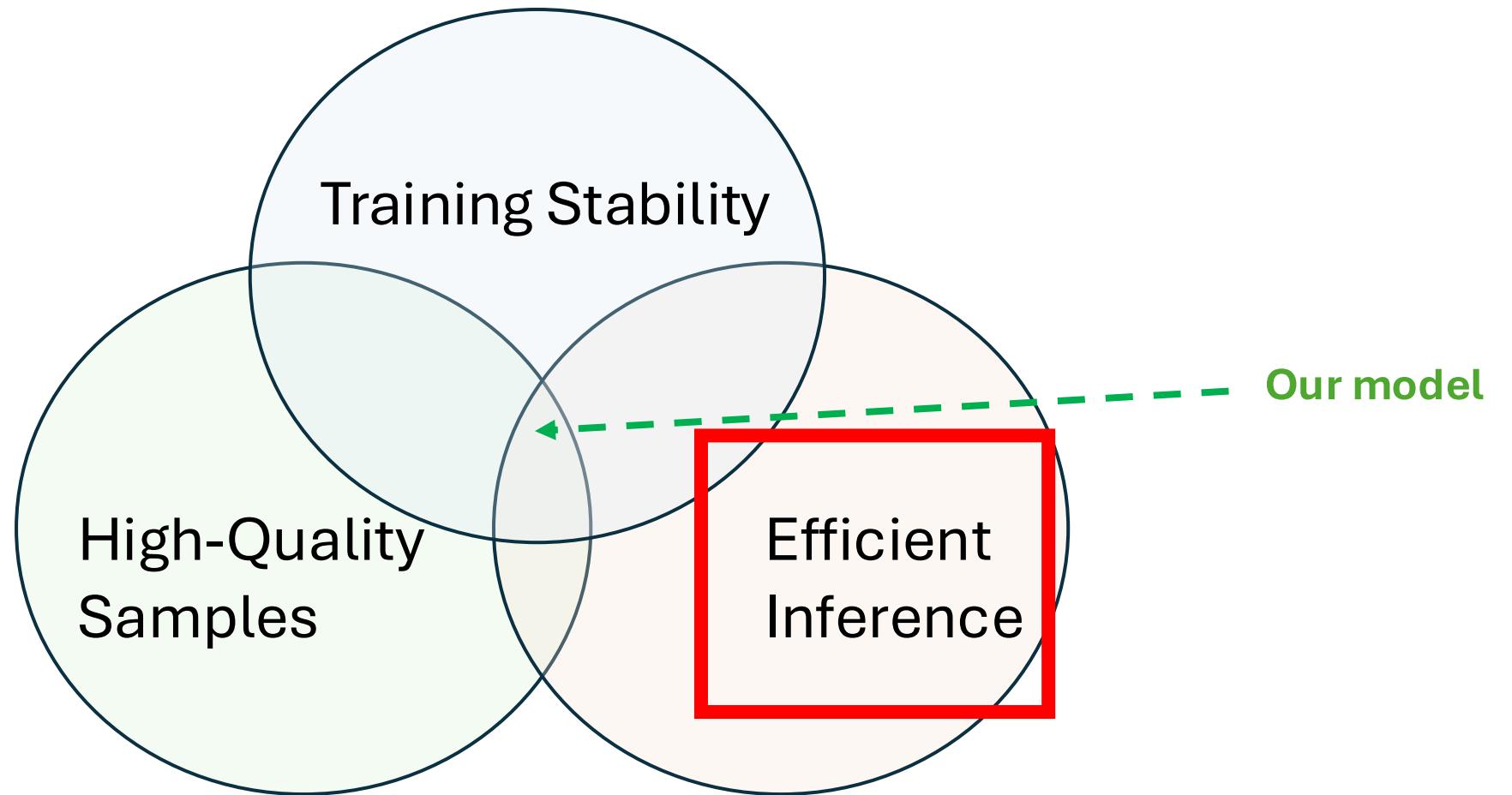
Ideal case: one- or few-step mapping from prior to data.
(efficient inference-time scaling)



Towards Efficient Inference-Time Scaling



Desiderata of Efficient Inference-Time Scaling

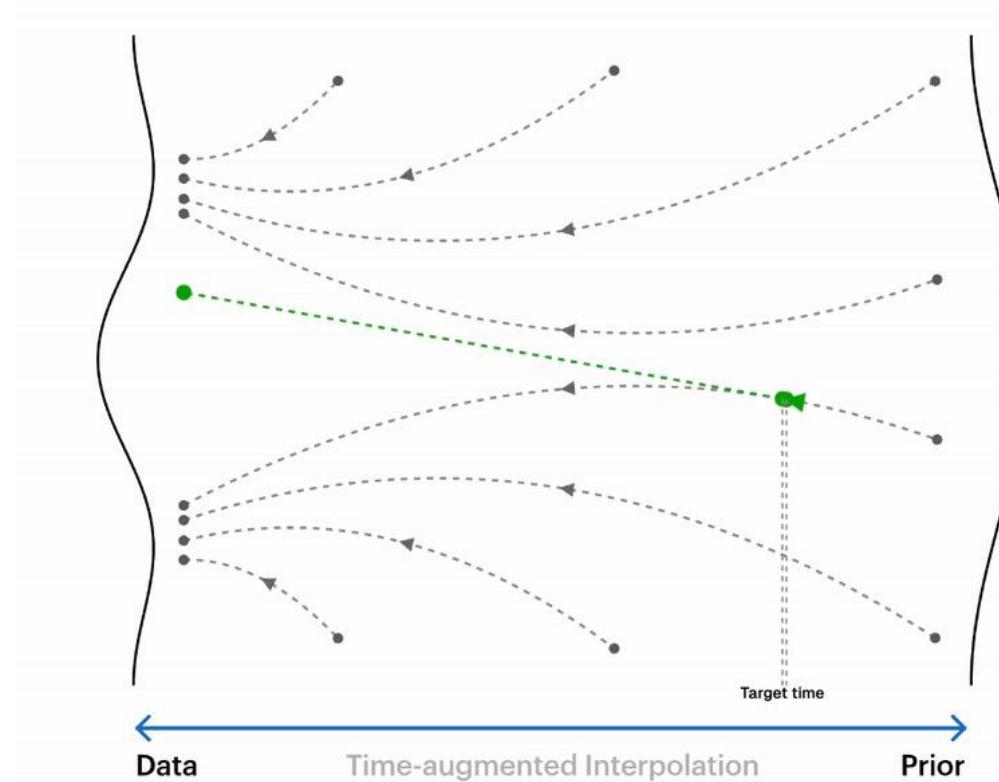


Problems with Diffusion Inference

- Want: **Large** jump in timesteps (**NOT** infinitesimal jumps) ODE)
- Denoising Diffusion Implicit Models (DDIM)
 - Euler under FM schedule

$$\mathbf{x}_s = \mathbf{x}_t + \hat{\mathbf{u}} \cdot (s - t)$$
$$\hat{\mathbf{u}} = \hat{\mathbf{u}}(\mathbf{x}_t; t)$$

- Linear w.r.t. s



Fixing the Capacity Issue

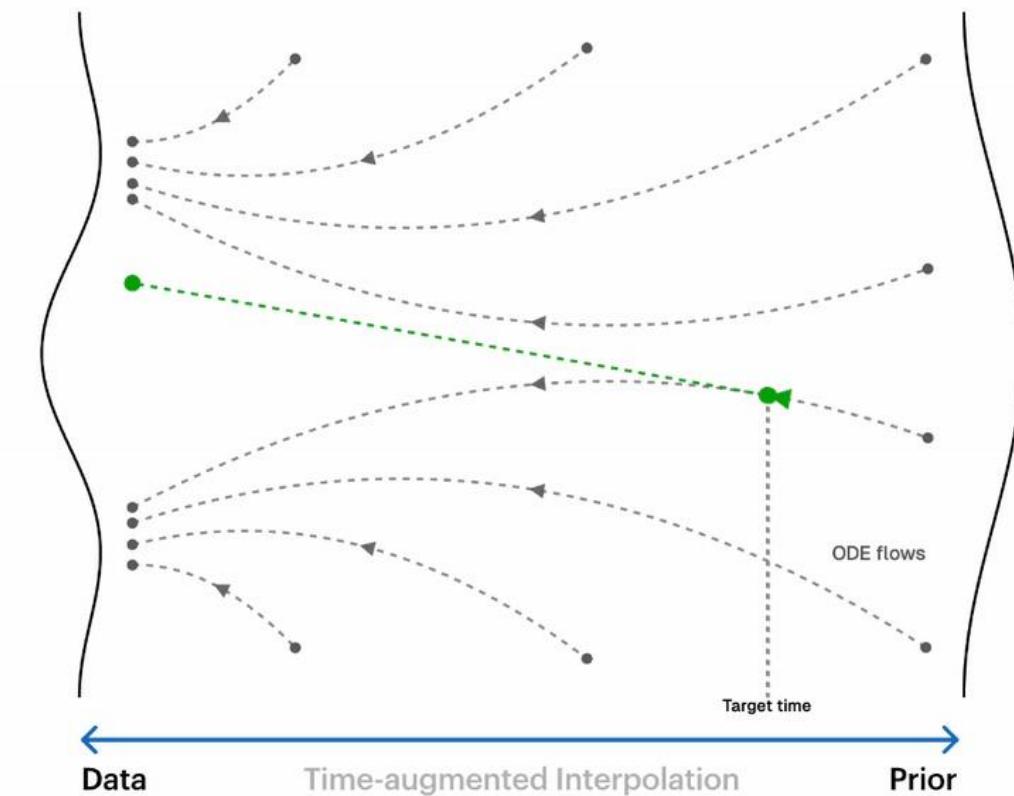
- Inject s into the network

$$\mathbf{x}_s = \mathbf{x}_t + \hat{\mathbf{u}} \cdot (s - t)$$

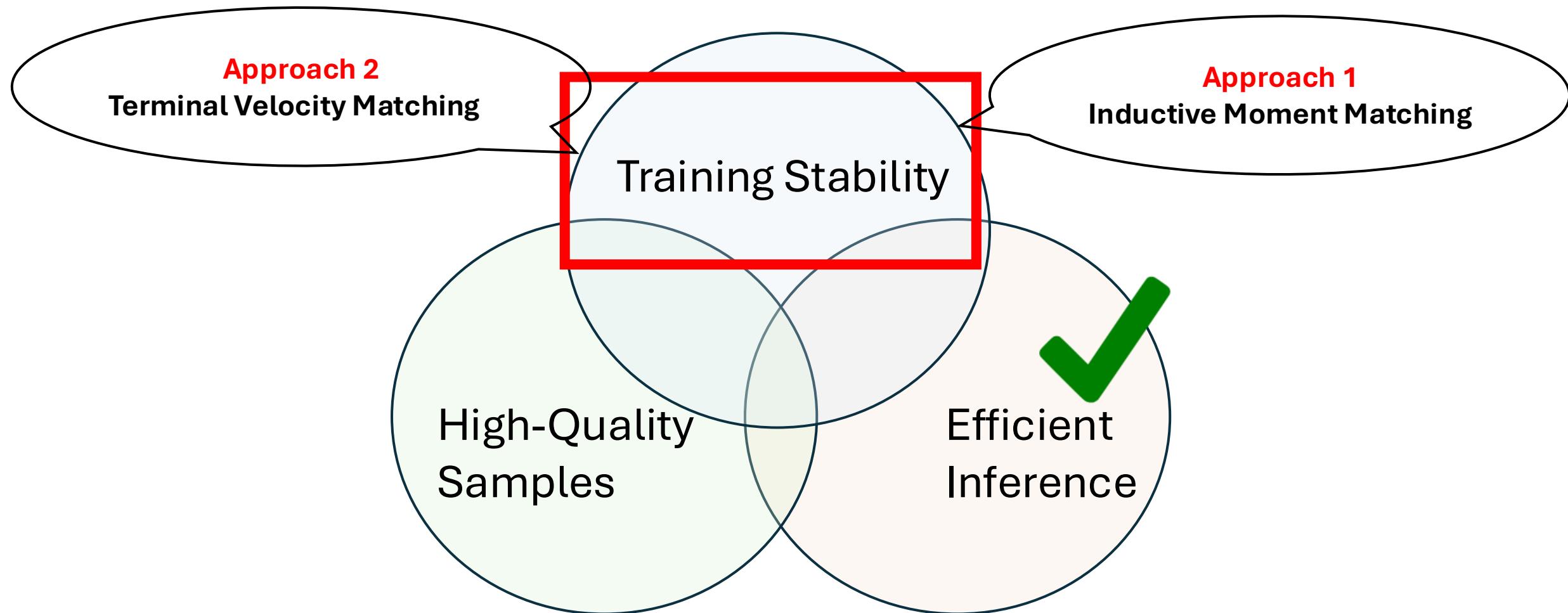
Before: $\hat{\mathbf{u}} = \hat{\mathbf{u}}(\hat{\mathbf{x}}_t; t)$

After: $\hat{\mathbf{u}} = \hat{\mathbf{u}}(\hat{\mathbf{x}}_t; t, s)$

- Covers complex solutions
 - ODE integration
- Can perform large time jump
(speeds up sampling)



Desiderata of Efficient Inference-Time Scaling



Inductive Moment Matching

A Distribution-Matching Few-Step Method

Inductive Moment Matching

- Key components

Training Objective

Sample-based Distribution Matching.

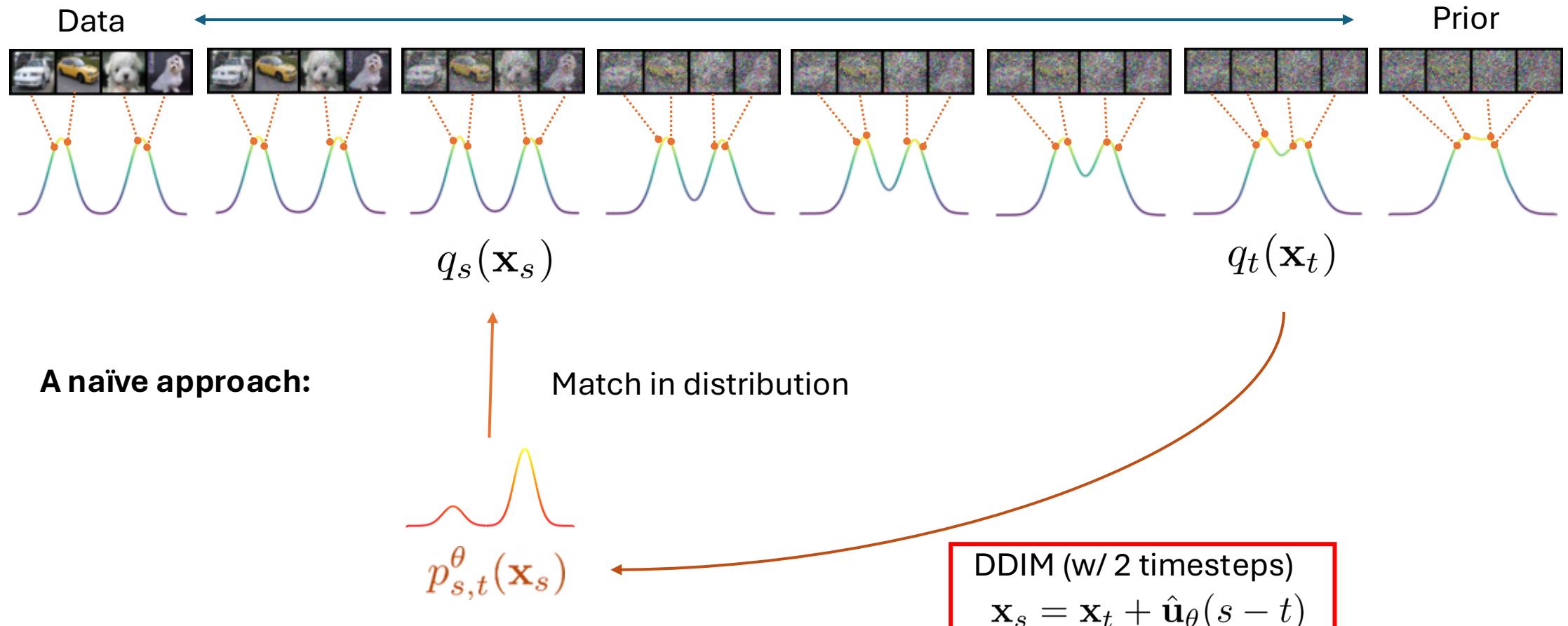
- Maximum Mean Discrepancy (MMD)

Training Target

Inductive Learning.

- Mathematical induction to match the model's own distribution

1. Sample-based Distribution Matching



- Use MMD due to its stability

We learn this DDIM mapping

Maximum Mean Discrepancy

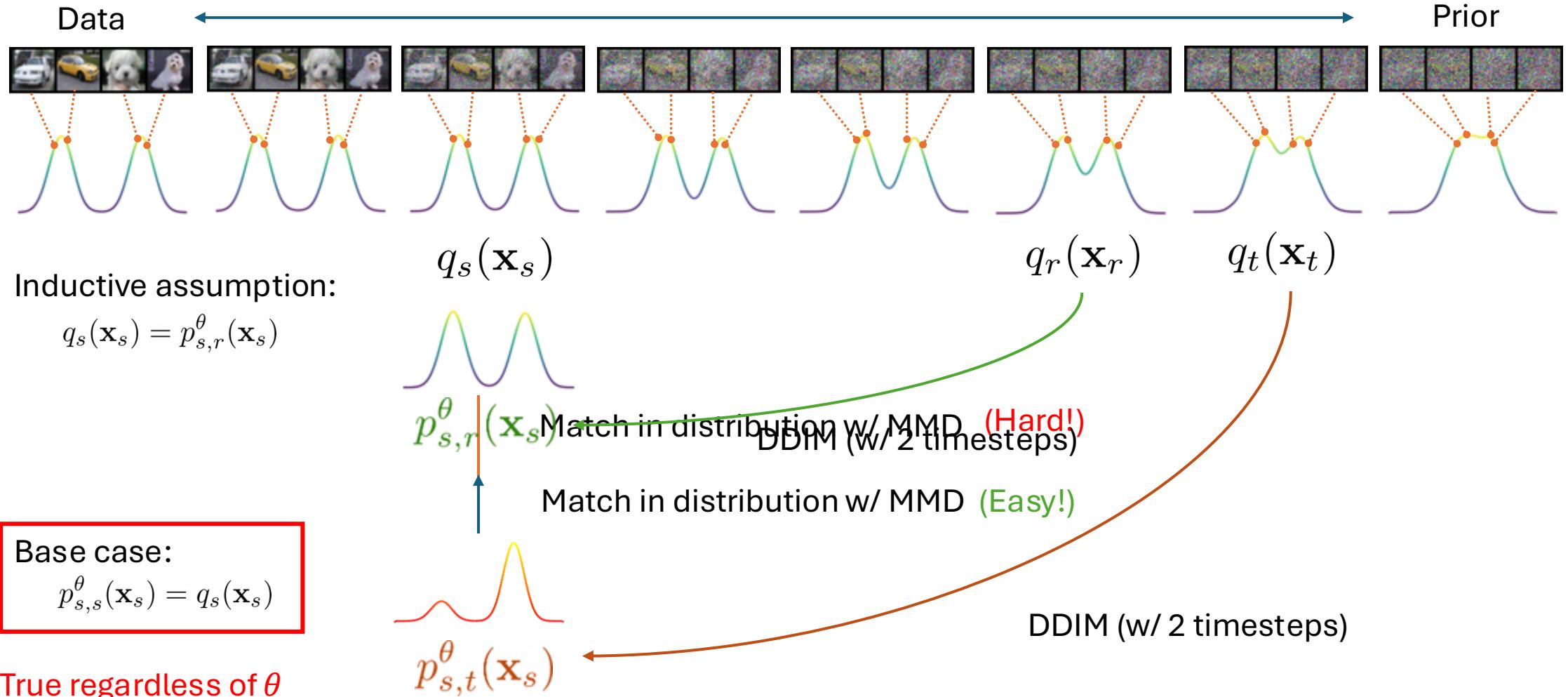
Advantages:

- No adversarial training:
 - GAN-like, **optimal discriminator** chosen in RKHS
- Standard kernel functions:
 - RBF, Laplace, etc. match **all moments**

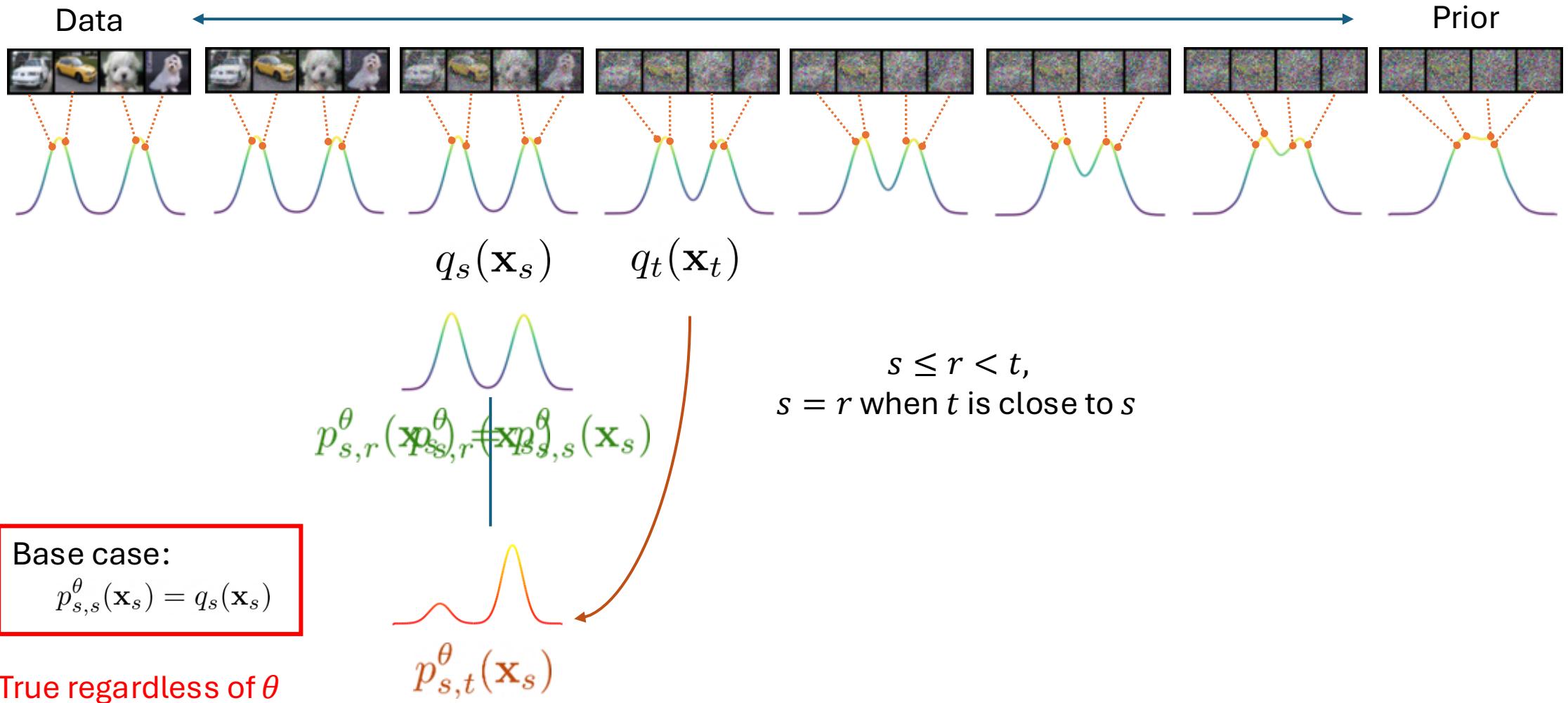
Empirical implementation:

- Multiple particles to estimate expectation

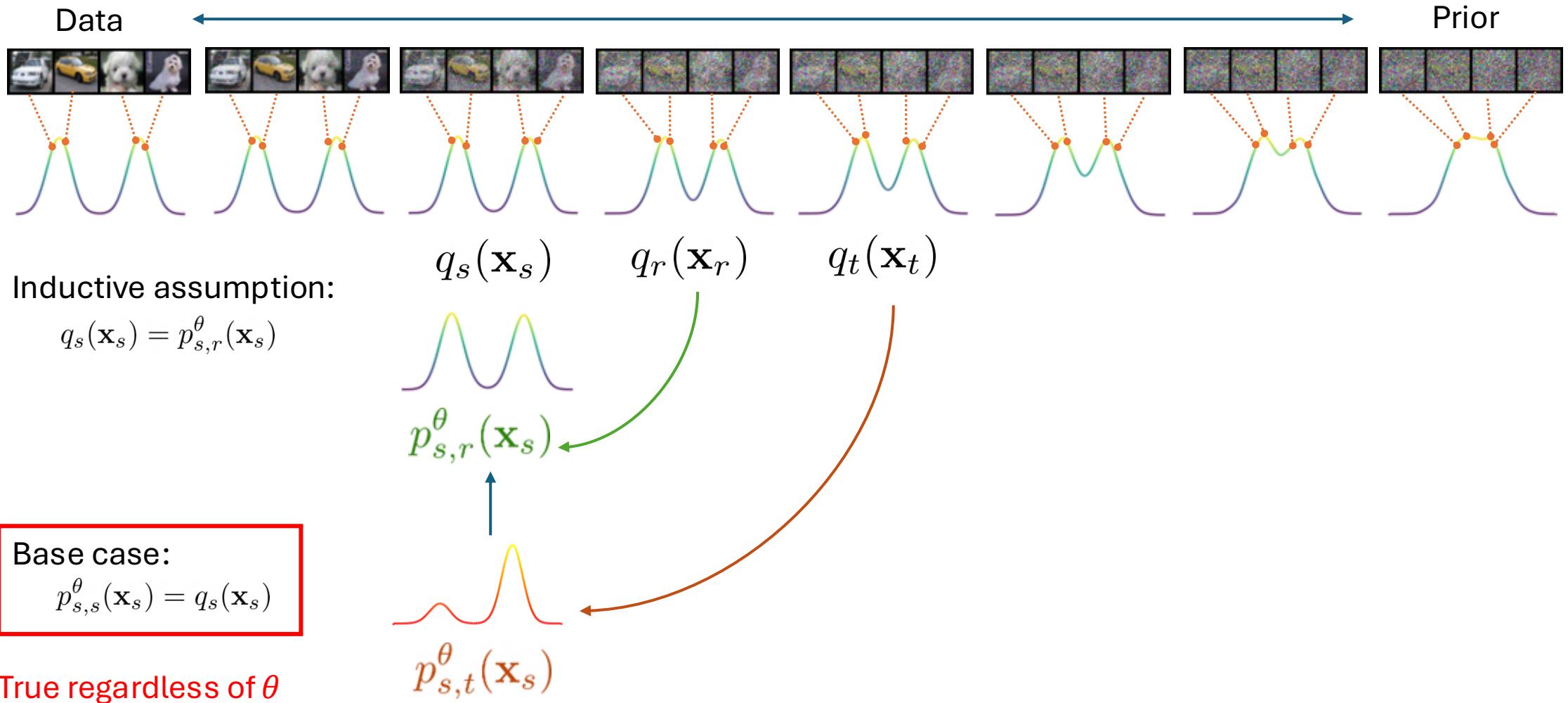
2. Inductive Learning



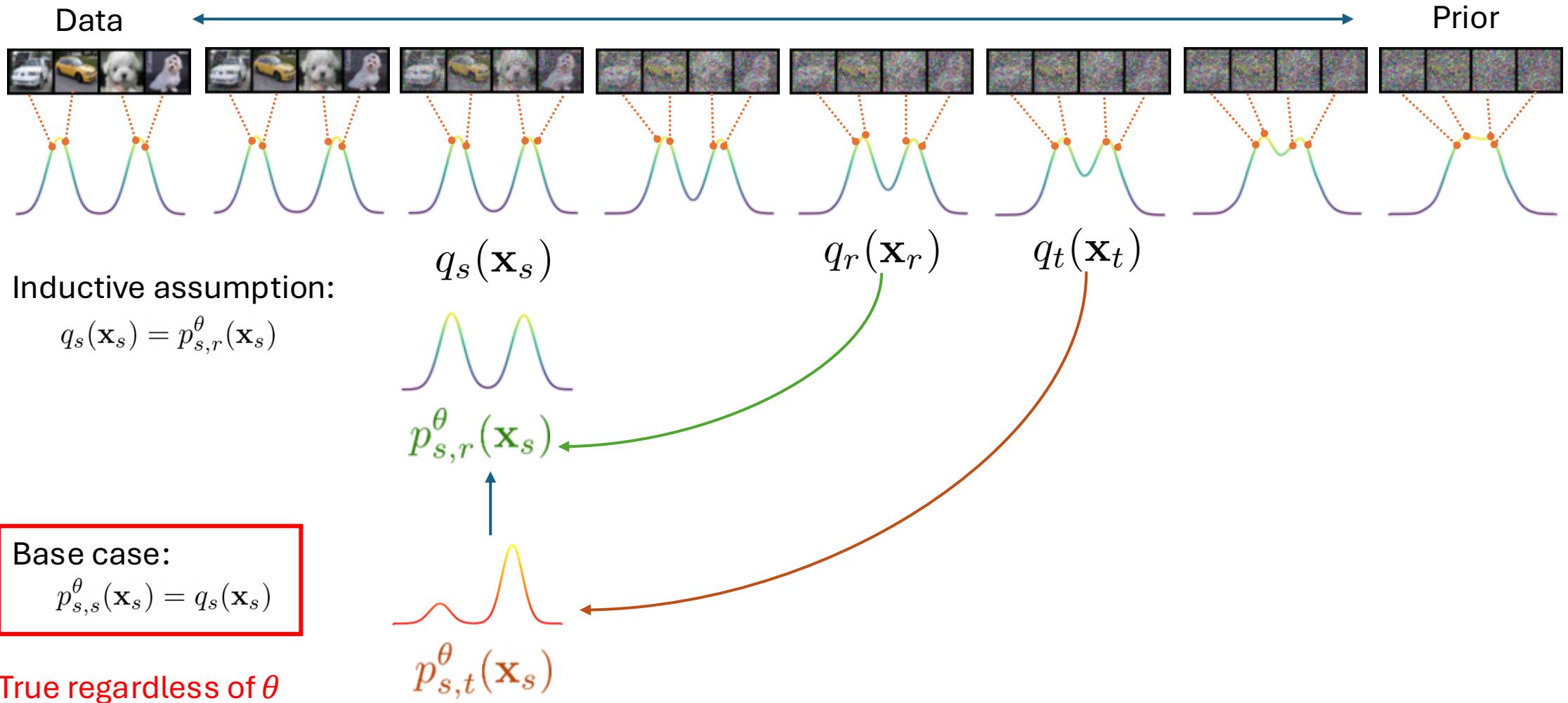
An Intuition on Inductive Learning



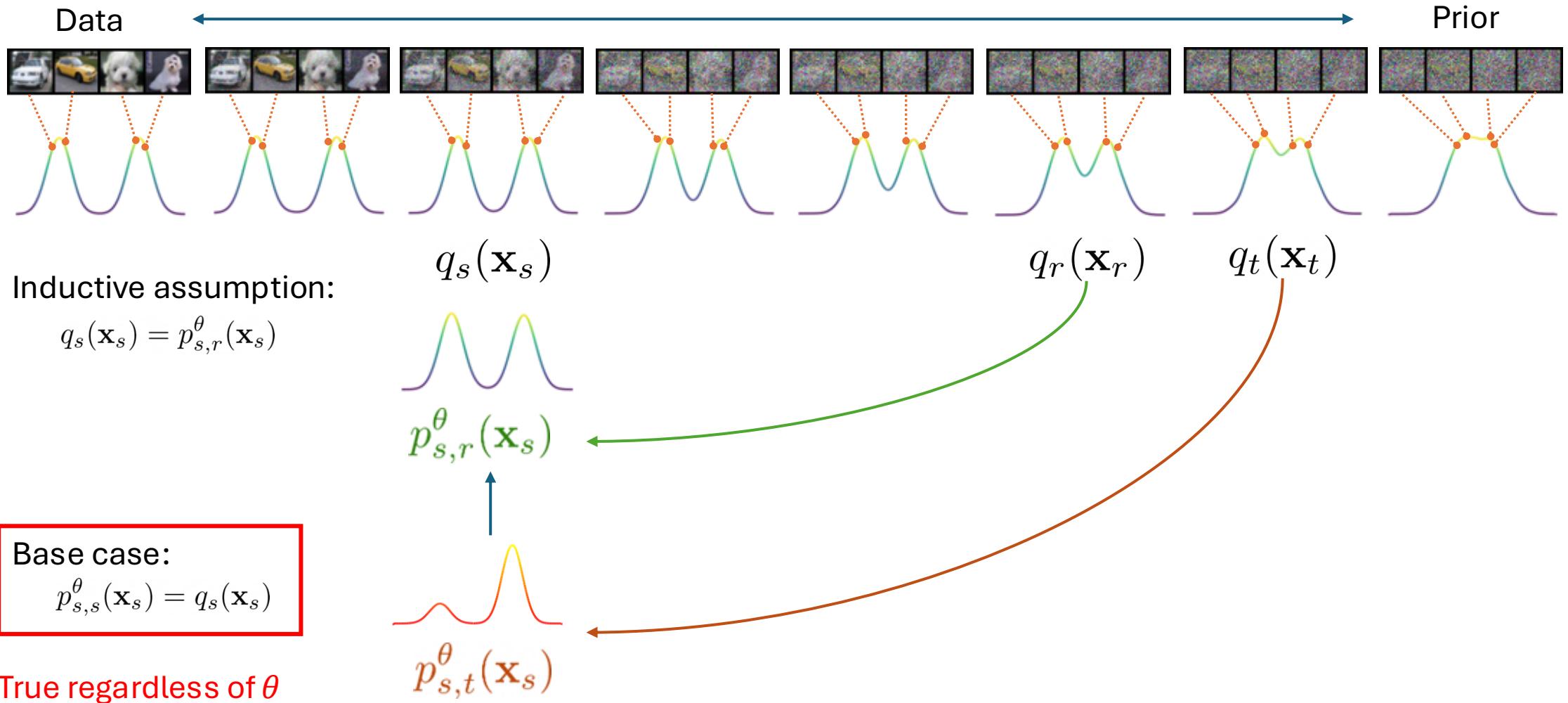
An Intuition on Inductive Learning



An Intuition on Inductive Learning



An Intuition on Inductive Learning



Stable Training

- Stable training as long as ≥ 4 particles
- Consistency training is a 1-particle special case

Inductive Moment Matching

100K

Training Iterations

Consistency Model



50K

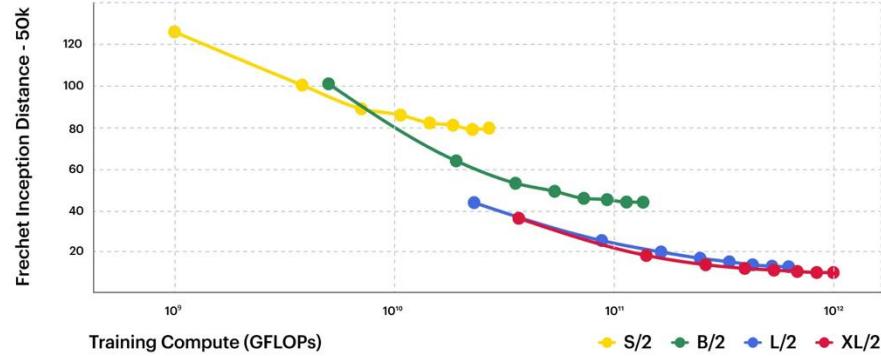
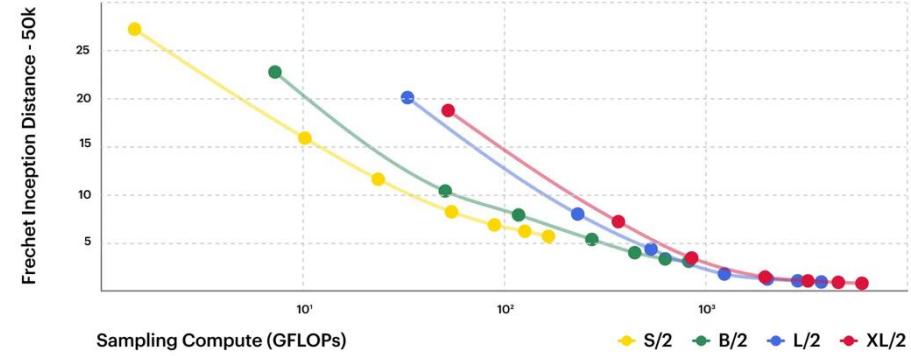
Training Iterations

Image Generation

- ImageNet-256x256

		FID
DiT	(250-step)	2.27
SiT	(250-step)	2.15
VAR-d20		2.57
VAR-d30		1.92
IMM	(8-step)	1.99
	(16-step)	1.90

Scaling Property



Relation to Other Works

- Consistency Training (2023)
 - Particle number = 1, L2 kernel
- Generative Moment Matching Networks (2015)
 - $t = 1, s=r=0$
- Generative Modeling via Drifting (2026)
 - Drift field parameterized via MMD attraction + repulsion

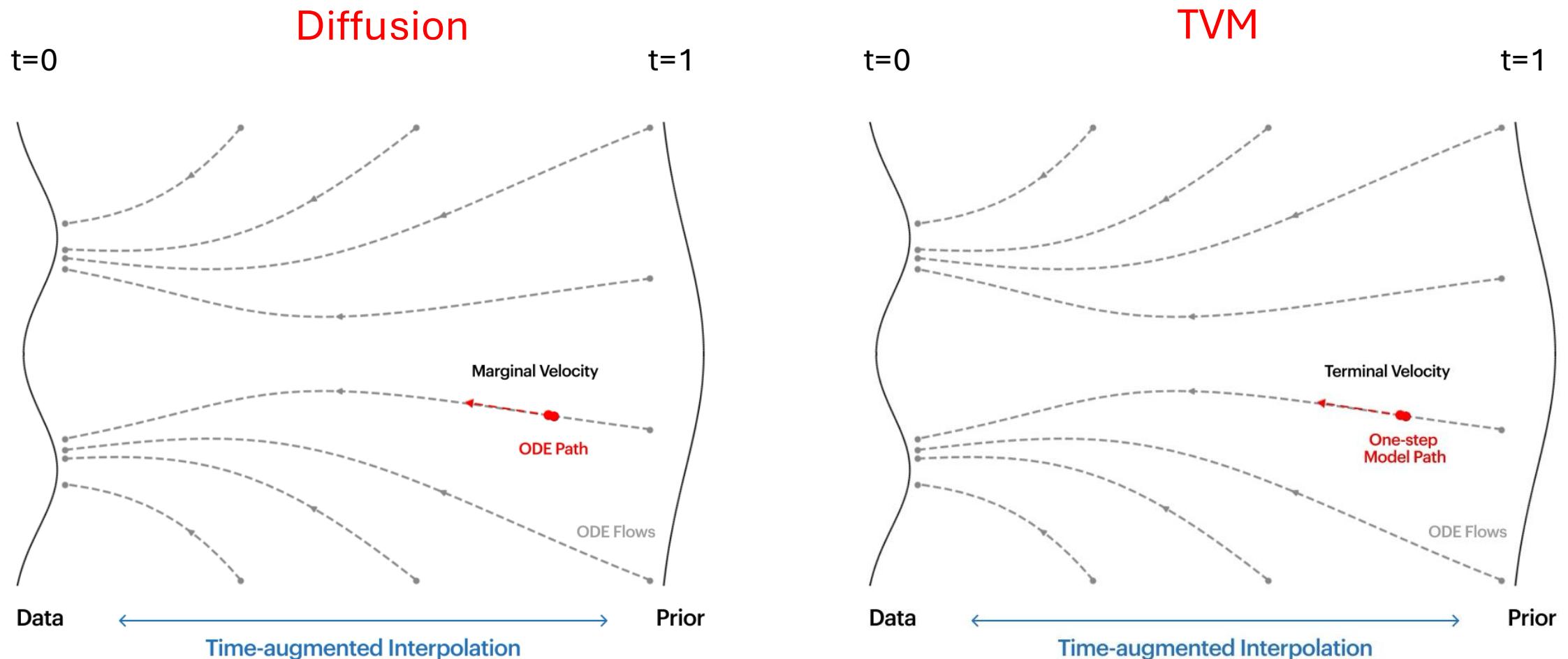
Limitations of IMM

- Multi-sample objective
 - => difficult to scale to high-dimension
- Mapping function $r(s, t)$ requires high precision (e.g. FP16)
 - => Large scale models require BF16 or lower

Terminal Velocity Matching

Going Back to Flows

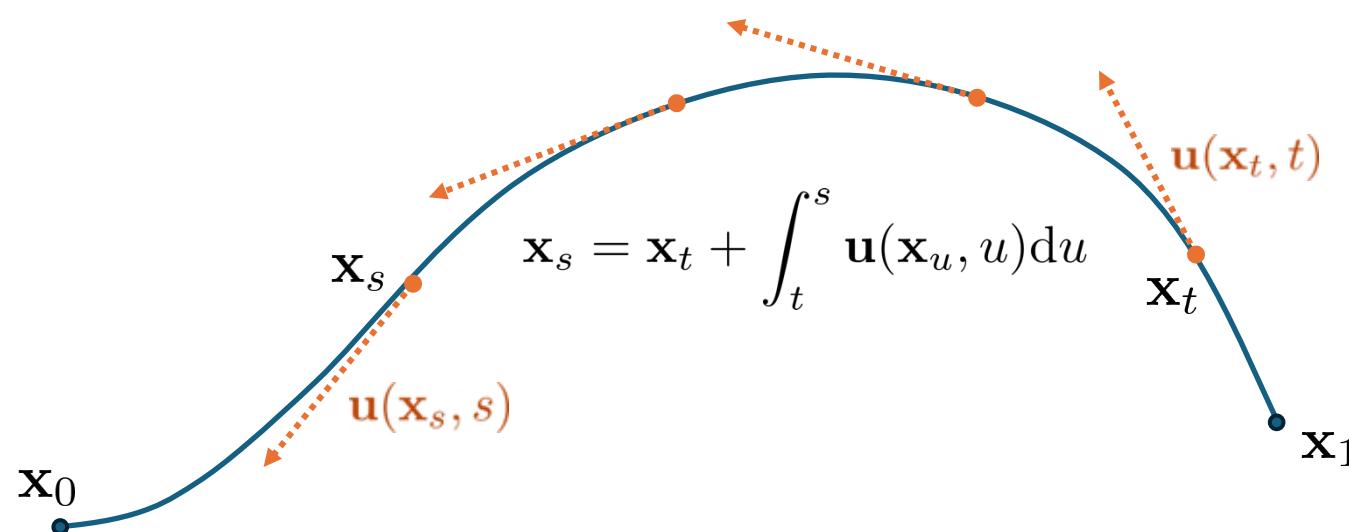
Intuition for Terminal Velocity Matching



Learning One-Step Trajectory Mapping

$$\mathbf{f}(\mathbf{x}_t, t, s) = \int_t^s \mathbf{u}(\mathbf{x}_r, r) dr$$

Diffusion/FM



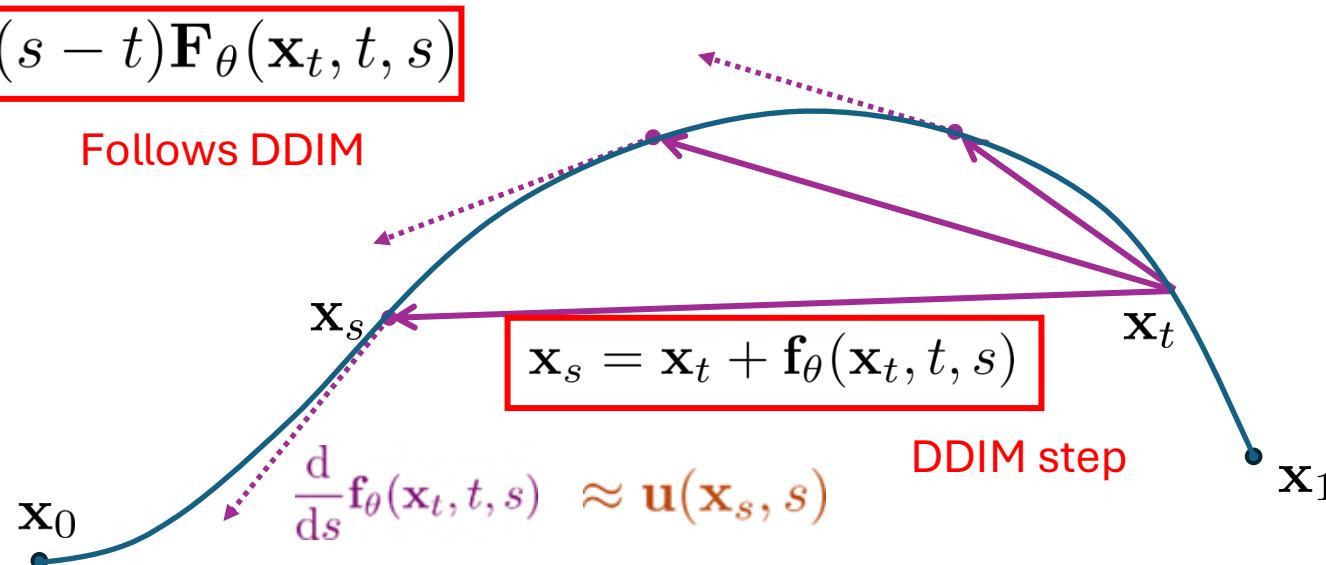
Learning One-Step Trajectory Mapping

$$\mathbf{f}(\mathbf{x}_t, t, s) = \int_t^s \mathbf{u}(\mathbf{x}_r, r) dr$$

$$\mathbf{f}_\theta(\mathbf{x}_t, t, s) = (s - t) \mathbf{F}_\theta(\mathbf{x}_t, t, s)$$

TVM

Follows DDIM



Naively: Match Displacement!

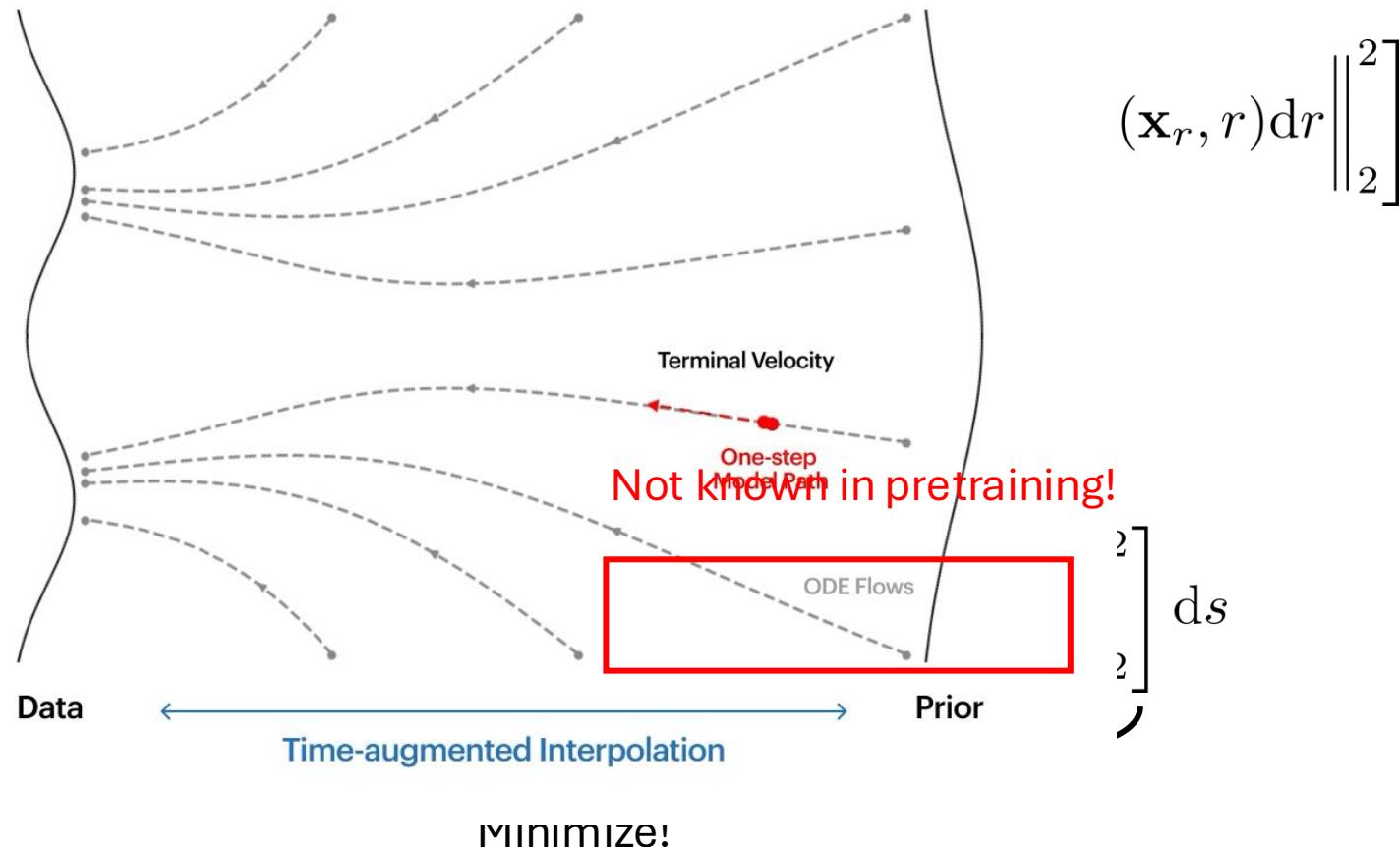
$$\mathcal{L}_{\text{displ}}^t \left[\frac{d}{ds} (\mathbf{f}(\mathbf{x}_t, t, s)) \left\| \mathbf{f}_\theta(\mathbf{x}_t, t, 0) - \mathbf{f} \left(\mathbf{x}_t, \int_t^0 \mathbf{u}(\mathbf{x}_s, s) ds \right) \right\|_2^2 \right]$$

Terminal Velocity Condition

Learning One-Step Trajectory Mapping

- Displacer
- Terminal Velocity

$$\mathcal{L}_{\text{displ}}^t(\theta) \leq$$



Proxy for Ground-Truth

- Just use network itself as approximation

$$\mathbf{u}_\theta(\mathbf{x}_t + \mathbf{f}_\theta(\mathbf{x}_t, t, s), s) \approx \mathbf{u}(\mathbf{x}_t + \mathbf{f}(\mathbf{x}_t, t, s), s)$$

Terrible approximation at start of training!

- Solution: Train such that $\mathbf{u}_\theta(\mathbf{x}_t, t) \approx \mathbf{u}(\mathbf{x}_t, t)$ Flow Matching
- Final Objective:

$$\mathcal{L}_{\text{TVM}}^{t,s}(\theta) = \mathbb{E}_{\mathbf{x}_t, \mathbf{x}_s, \mathbf{v}_s} \left[\left\| \frac{d}{ds} \mathbf{f}_\theta(\mathbf{x}_t, t, s) - \mathbf{u}_\theta(\mathbf{x}_t + \mathbf{f}_\theta(\mathbf{x}_t, t, s), s) \right\|_2^2 + \left\| \mathbf{u}_\theta(\mathbf{x}_s, s) - \mathbf{v}_s \right\|_2^2 \right]$$

Relation to Distribution Divergence

- TVM loss bounds Wasserstein distance up to a constant

Network Lipschitzness

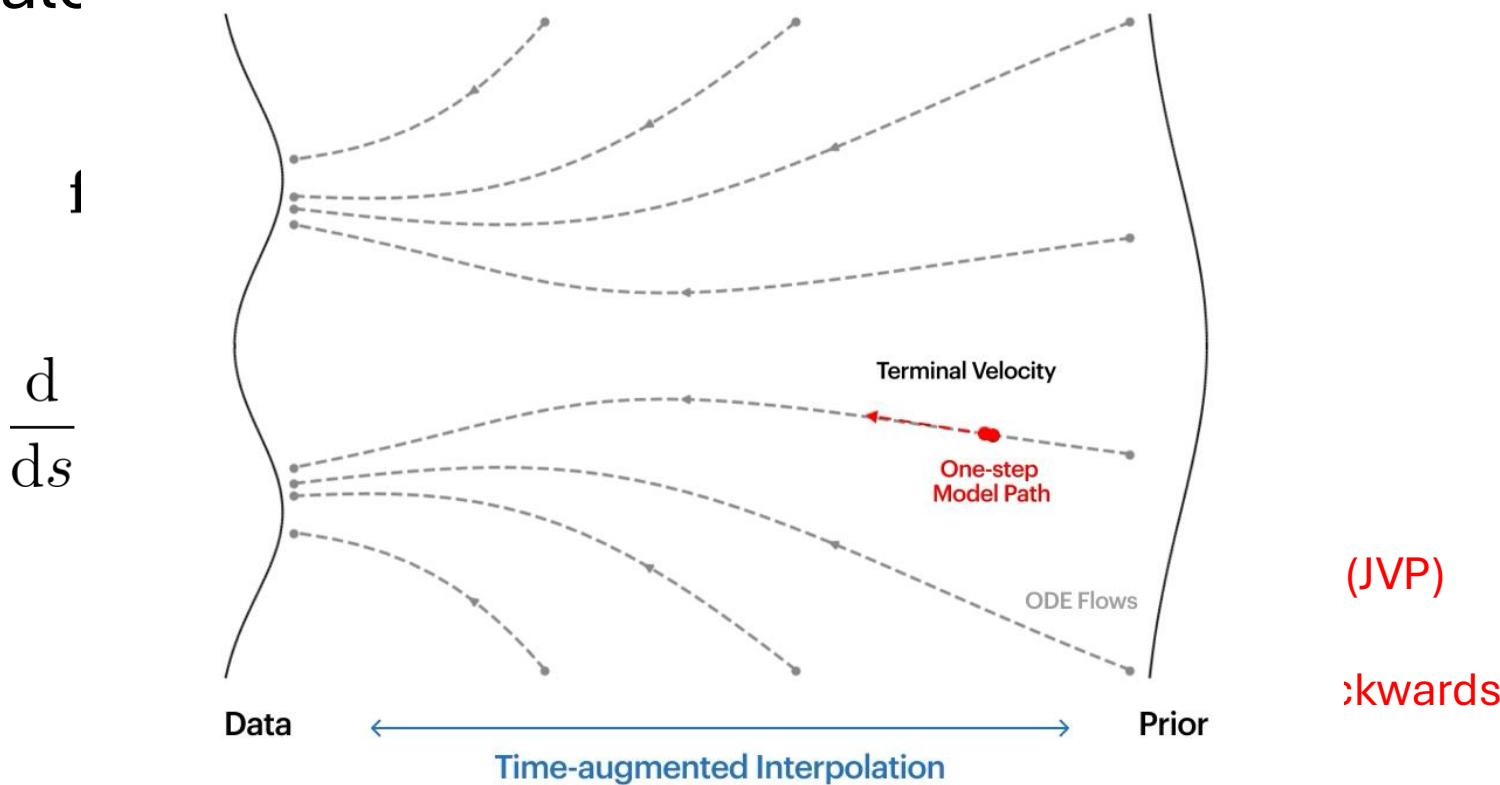
$$W_2^2(\mathbf{f}_{t \rightarrow 0}^\theta \# p_t, p_0) \leq \int_0^t \lambda \boxed{[L]}(s) \mathcal{L}_{\text{TVM}}^{t,s}(\theta) ds + C,$$

- **Implication:** diffusion transformers are **NOT Lipschitz-continuous**. Need "semi-Lipschitz control"!

- LayerNorm -> RMSNorm
- QKNorm w/ RMSNorm
- Add RMSNorm without parameters to time modulation

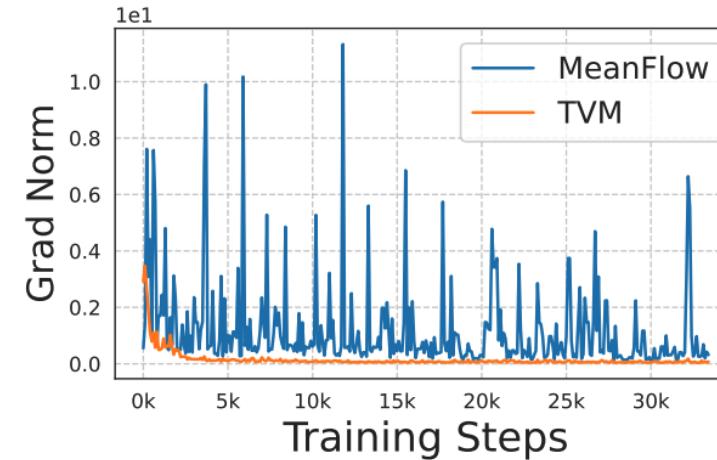
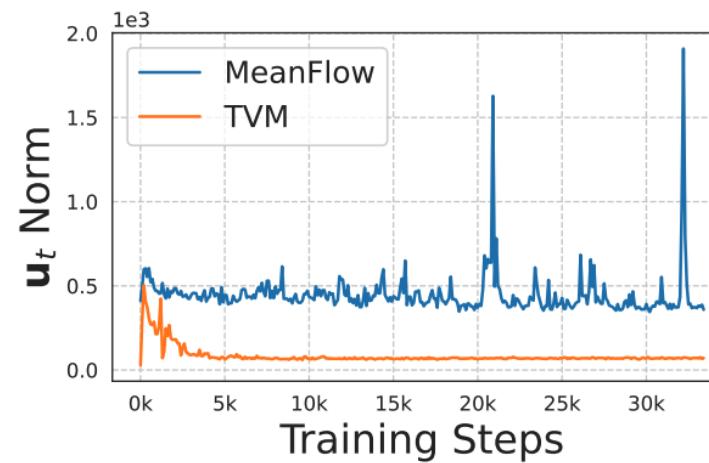
Calculating Terminal Velocity

- How to calc
- Recall: $\frac{d}{ds}$



Stable Training vs. MeanFlow

- Well-conditioned gradient profile
- Well-conditioned norm $u_\theta(\mathbf{x}_t + f_\theta(\mathbf{x}_t, t, s), s)$ w/ random CFG



ImageNet Generation

- SOTA 1-NFE
- Outperforms DiT, SiT in 4 NFE

One-step samples

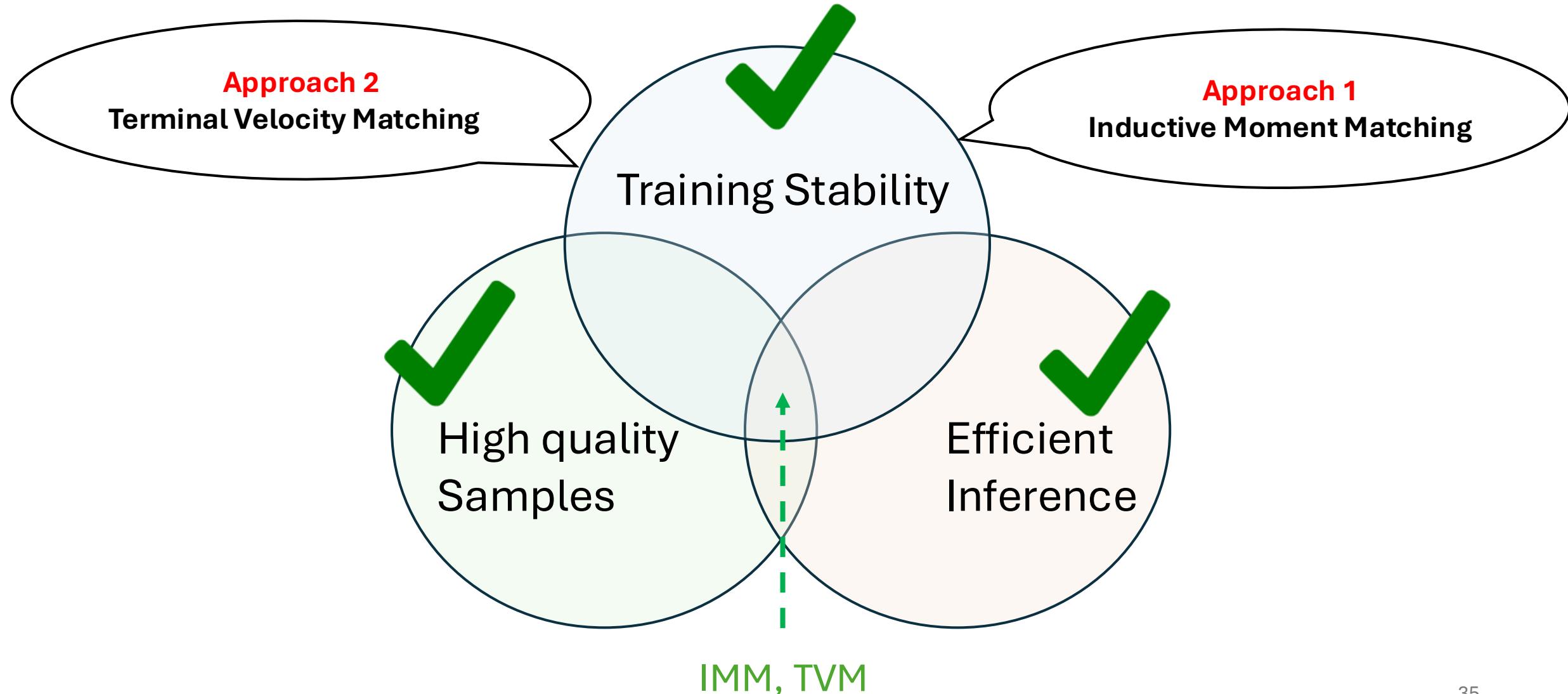
TVM at 10B+ Scale

<https://lumalabs.ai/blog/engineering/tvm>

4-NFE
TVM
on T2I

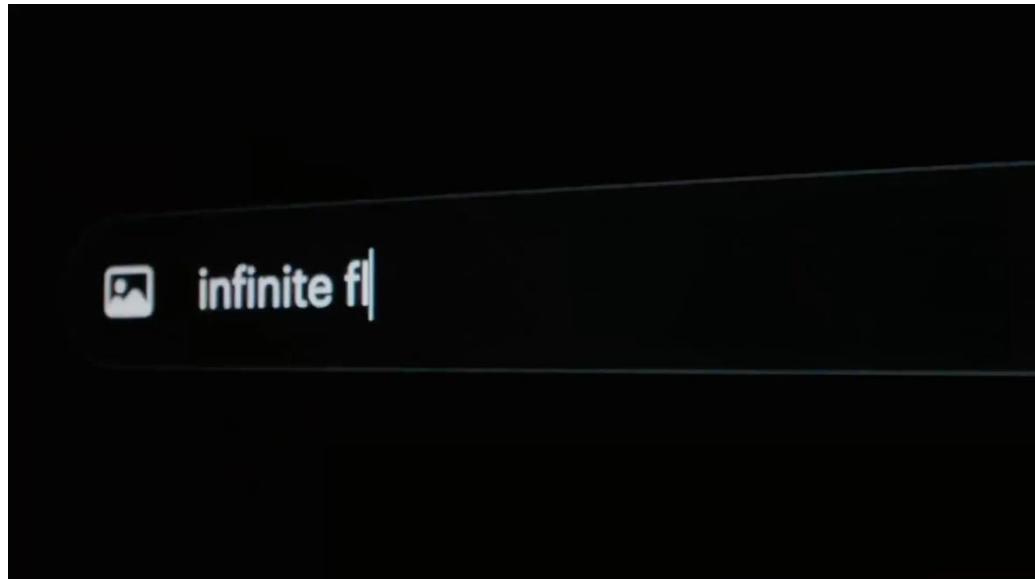
- Challenges at Scale:
 - FSDP with JVP – Solution: Wrap JVP inside each layer of FSDP.
 - Writing JVP kernel (with backwards support) for arbitrary sequence length

Desiderata of Efficient Inference-Time Scaling



Luma AI is a research and product lab aiming to build multimodal AGI.

- Recent Series-C: \$900M.
- Average age in research team: ~27
- Inventors of **DDIM** & **NeRF** work here.



If you are interested in advancing multimodal generative AI, join us!

<https://lumalabs.ai/join>

Research team have multiple roles open around:

1. [Omni models](#) (unifying understanding + generation)
2. [Video / Audio models](#)
3. [Voice agents](#)
4. [World models](#)
5. [Multimodal agents](#)
6. [AI Infra](#)

(“Internships / Residency” also available, but ideally \geq 6 months and not driven by publications)