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Text-to-Video Models at Luma
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Why are Diffusion and Flow Matching so Good?

• Simple L2 loss → stable and scalable!
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Not known in closed form!

Data Prior



Problems of Diffusion and Flow Matching

      (probability-flow ODE)
   

Ideal case: one- or few-step mapping from prior to data.
          (efficient inference-time scaling)
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NOT optimal in utilizing network capacity. 

ODE simulation error Slow inference



Towards Efficient Inference-Time Scaling
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Diffusion Pretrain 
+  Step Distillation

• Consistency Distillation

• Distribution-Matching Distillation

• Score-Identity Distillation

• …

Single-Stage Pretraining

• Consistency Training

• MeanFlow

• Inductive Moment Matching

• Terminal Velocity Matching

Problems:

• Can be unstable

• Too many models and additional 
engineering complexities This talk



Desiderata of Efficient Inference-Time Scaling
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Training Stability

High-Quality 
Samples

Efficient 
Inference

Our model



Problems with Diffusion Inference

• Want: Large jump in timesteps (NOT infinitesimal jumps)
• Denoising Diffusion Implicit Models (DDIM)

• Euler under FM schedule

• Linear w.r.t. 𝑠
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      (probability-flow ODE)
   



• Inject 𝑠 into the network

• Covers complex solutions 
• ODE integration

• Can perform large time jump
(speeds up sampling)

Before: 

Fixing the Capacity Issue
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After: 



Desiderata of Efficient Inference-Time Scaling
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Training Stability

High-Quality 
Samples

Efficient 
Inference

Approach 1 
Inductive Moment Matching

Approach 2 
Terminal Velocity Matching



Inductive Moment Matching
A Distribution-Matching Few-Step Method
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Inductive Moment Matching

• Key components
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Sample-based 
Distribution Matching. 
• Maximum Mean Discrepancy 

(MMD)

Inductive Learning.
• Mathematical induction to 

match the model’s own 
distribution

Training Objective Training Target



1. Sample-based Distribution Matching

• Use MMD due to its stability

Data Prior

DDIM (w/ 2 timesteps)

Match in distribution
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A naïve approach:

We learn this DDIM mapping



Maximum Mean Discrepancy
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Advantages:

• Multiple particles to estimate expectation

• Standard kernel functions:
• RBF, Laplace, etc. match all 

moments

• No adversarial training:
• GAN-like, optimal discriminator 

chosen in RKHS

Empirical implementation:



2. Inductive Learning
Data Prior

DDIM (w/ 2 timesteps)

Match in distribution w/ MMD (Hard!)DDIM (w/ 2 timesteps)

Inductive assumption: 

Match in distribution w/ MMD  (Easy!)
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Base case:

True regardless of 𝜃



An Intuition on Inductive Learning
Data Prior
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Base case:

𝑠 ≤ 𝑟 < 𝑡,
𝑠 = 𝑟 when 𝑡 is close to 𝑠

True regardless of 𝜃



An Intuition on Inductive Learning
Data Prior

Inductive assumption: 
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Base case:

True regardless of 𝜃



An Intuition on Inductive Learning
Data Prior

Inductive assumption: 
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Base case:

True regardless of 𝜃



An Intuition on Inductive Learning
Data Prior

Inductive assumption: 
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Base case:

True regardless of 𝜃



Stable Training

• Stable training as 
long as >=4 particles

• Consistency training 
is a 1-particle 
special case
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Image Generation
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FID

DiT          (250-step) 2.27

SiT           (250-step) 2.15

VAR-d20 2.57

VAR-d30 1.92

IMM       (8-step)
                 (16-step)

1.99

1.90

• ImageNet-256x256



Scaling Property
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Relation to Other Works

• Consistency Training (2023)
• Particle number = 1, L2 kernel

• Generative Moment Matching Networks (2015)
• t = 1, s=r=0

• Generative Modeling via Drifting (2026)
• Drift field parameterized via MMD attraction + repulsion
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Limitations of IMM

• Multi-sample objective 
• => difficult to scale to high-dimension

• Mapping function 𝑟(𝑠, 𝑡) requires high precision (e.g. FP16) 
• => Large scale models require BF16 or lower
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Terminal Velocity Matching
Going Back to Flows
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Intuition for Terminal Velocity Matching
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Diffusion TVM
t=0 t=1 t=0 t=1



Learning One-Step Trajectory Mapping
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Diffusion/FM



Learning One-Step Trajectory Mapping
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TVM

Terminal Velocity ConditionNaively: Match Displacement!

Follows DDIM

DDIM step



Learning One-Step Trajectory Mapping

• Displacement Error

• Terminal Velocity Error 
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Minimize!

Not known in pretraining!



Proxy for Ground-Truth

• Just use network itself as approximation

• Solution: Train such that

• Final Objective: 
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Terrible approximation at start of training!

Flow Matching



Relation to Distribution Divergence

• TVM loss bounds Wasserstein distance up to a constant

• Implication: diffusion transformers are NOT Lipschitz-
continuous. Need ”semi-Lipschitz control”! 
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• LayerNorm -> RMSNorm • QKNorm w/  RMSNorm
• Add RMSNorm without 

parameters to time modulation

Network Lipschitzness



Calculating Terminal Velocity

• How to calculate  

• Recall: 
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Jacobian-Vector Product (JVP)

• No stop-grad! JVP backwards

• Taken only on s!



Stable Training vs. MeanFlow

• Well-conditioned 
gradient profile

• Well-conditioned 
norm
w/ random CFG 
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ImageNet Generation
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• SOTA 1-NFE
• Outperforms DiT, SiT in 4 NFE

One-step samples



TVM at 10B+ Scale

• Challenges at Scale:

• FSDP with JVP – Solution: Wrap JVP inside each layer of FSDP.

• Writing JVP kernel (with backwards support) for arbitrary sequence length
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https://lumalabs.ai/blog/engineering/tvm

4-NFE 
TVM
on T2I

https://lumalabs.ai/blog/engineering/tvm


Desiderata of Efficient Inference-Time Scaling
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Training Stability

High quality 
Samples

Efficient 
Inference

IMM, TVM

Approach 1 
Inductive Moment Matching

Approach 2 
Terminal Velocity Matching



Luma AI is a research and product lab aiming 
to build multimodal AGI.
• Recent Series-C: $900M.
• Average age in research team: ~27
• Inventors of DDIM & NeRF work here.
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If you are interested in advancing multimodal 
generative AI, join us! 
https://lumalabs.ai/join

Research team have multiple roles open around:

1.Omni models (unifying understanding + generation)
2.Video / Audio models
3.Voice agents
4.World models
5.Multimodal agents
6.AI Infra

(“Internships / Residency” also available, but ideally >= 6 months and not driven by 
publications)
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https://lumalabs.ai/join
https://jobs.gem.com/lumalabs-ai/55cb4576-d2cb-4775-a492-32bae2566a8f
https://jobs.gem.com/lumalabs-ai/55cb4576-d2cb-4775-a492-32bae2566a8f
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