
Lecture 7: Text-to-Image 
Generation & SOTA Models

Yutong (Kelly) He

10-799 Diffusion & Flow Matching, Feb 5th, 2026 
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AWS Credits are finally here 

Dhruv from AWS is here to show us some quick tutorials
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Quiz time!

10 minutes

Closed-book

Pen & Paper

If you don’t want to stay for the lecture, feel free to leave after 

submitting your quiz!
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Housekeeping Announcements

• Homework 3 is out! https://kellyyutonghe.github.io/10799S26/homework/

• Due date: 2/15 Sun, Late Due date: 2/17 Mon

• Start early and finish early if possible! This way you’ll have more time for 

HW 4

• Poster PDF submission 2/25 Wed

• Poster Session 2/26 Thur

• No class on 2/24 Tue

• Will have a poll about AWS credit on Discord soon

https://kellyyutonghe.github.io/10799S26/homework/
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Correction – Midpoint solver
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Previously we learned about the design space of 
diffusion models

The design space of diffusion models

Training Model Sampling

• Prefixed noise schedule

• Training noise sampling 

schedule

• Loss weighting w.r.t. time

• Reparameterization

• Input/Output scaling

• How to do time 

conditioning

• Solver

• Sampling time noise 

schedule

• Number of time steps
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Last time we learned how to turn an unconditional 
diffusion into a conditional one!

Training-based methods:

• Classifier guidance diffusion

• Classifier free guidance (if you don’t already have a conditional model)

Training-free methods:

• DPS

• MPGD

• SDEdit

• Classifier free guidance (if you already have a conditional model)
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Today we will be looking at this one specific type of 
condition – Text!

Conditional 

diffusion model
∇𝑥𝑡 log 𝑝𝜃(𝑥𝑡 , 𝑡|𝑐)

“a headshot of 

a woman with 
dark hair”
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The design space of text-to-image generation

The design space of text-to-image generation
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The design space of text-to-image generation

The design space of text-to-image generation

Training Model Text Encoding

• Which training paradigm 

should we choose

• How to deal with high 

resolution data

• Model architecture

• How to input text into an 

image generative model
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Images are super super high dimensional data

In HW we are dealing with 64x64 images

• 64x64x3=12,288 => 18M model parameters

Now what if we need to train models for 256x256 images

• 256x256x3=196,608 => probably in the hundreds of M’s parameters

What about 1080p resolution?

• 1920×1080x3=6,220,800 => probably in the billions of parameters

And what about 4k Images?

• 3840x2560x3=29,491,200 => probably dozens of billions of parameters
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How to deal with high resolution data?
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Idea: Compression via an autoencoder

X

Encoder
𝐸𝜙

Decoder
𝐷𝜃

Reconstruction

Z
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Latent diffusion models (forward process)

Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion Models”. CVPR 2022. https://arxiv.org/pdf/2112.10752

𝑥

Encoder
𝐸𝜙

𝑧
Add noise

𝑧𝑡

https://arxiv.org/pdf/2112.10752
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Latent diffusion models (reverse process)

Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion Models”. CVPR 2022. https://arxiv.org/pdf/2112.10752

Decoder
𝐷𝜃

ො𝑥

𝑧𝑇 𝑧0.75𝑇 𝑧0.5𝑇 𝑧0.25𝑇 𝑧0

https://arxiv.org/pdf/2112.10752
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Latent diffusion models

1. Pre-train an autoencoder on your data

2. Freeze your pre-trained autoencoder, 

and then train a diffusion model in the 

latent space of your autoencoder

X

Encoder
𝐸𝜙

Decoder
𝐷𝜃

Reconstruction

Z

Decoder
𝐷𝜃

Encoder
𝐸𝜙

𝑧𝑇 𝑧0.75𝑇 𝑧0.5𝑇 𝑧0.25𝑇 𝑧0

Reverse

𝑧𝑇𝑧0.75𝑇𝑧0.5𝑇𝑧0.25𝑇𝑧0

Forward
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Vanilla VAE v.s. Latent Diffusion

• Vanilla VAE sampling:

• Latent diffusion sampling:

X

Encoder
𝐸𝜙

Decoder
𝐷𝜃

Reconstruction

Z

Decoder

𝐷𝜃

ො𝑥
𝑧𝑇~𝑁(0, 𝐼) 𝑧0.75𝑇 𝑧0.5𝑇 𝑧0.25𝑇 𝑧0

Decoder

𝐷𝜃

ො𝑥

𝑧~𝑁(0, 𝐼)
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Latent diffusion models

1. Pre-train an autoencoder on your data

2. Freeze your pre-trained autoencoder, 

and then train a diffusion model in the 

latent space of your autoencoder

X

Encoder
𝐸𝜙

Decoder
𝐷𝜃

Reconstruction

Z

Decoder
𝐷𝜃

Encoder
𝐸𝜙

𝑧𝑇 𝑧0.75𝑇 𝑧0.5𝑇 𝑧0.25𝑇 𝑧0

Reverse

𝑧𝑇𝑧0.75𝑇𝑧0.5𝑇𝑧0.25𝑇𝑧0

Forward

Which 
autoencoder?
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Attempt 1: A normal VAE

Vanilla VAE has a lot of problems:

• The “semantics” are vague

• Can have the “average face” problem – generations are blurry and overly 

smoothed out

• Sometimes there’s even a posterior collapse problem: the decoder just 

completely ignores the sampled latent and just do its own thing

• Difficult to be compatible with transformers
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Attempt 2: Vector-Quantized VAE (VQ-VAE)

Esser et al. “Taming Transformers for High-Resolution Image Synthesis”. CVPR 2021. https://arxiv.org/pdf/2012.09841

van den Oord et al. “Neural Discrete Representation Learning”. NeurIPS 2017. https://arxiv.org/pdf/1711.00937

https://arxiv.org/pdf/2012.09841
https://arxiv.org/pdf/2012.09841
https://arxiv.org/pdf/1711.00937
https://arxiv.org/pdf/1711.00937
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Attempt 2.5: Vector-Quantized GAN (VQGAN)

Esser et al. “Taming Transformers for High-Resolution Image Synthesis”. CVPR 2021. https://arxiv.org/pdf/2012.09841

https://arxiv.org/pdf/2012.09841


22
22
22

22

Attempt 3: Flux 2, making continuous VAE work

The three-way tradeoff of a VAE made for latent diffusion

Learnability

Perceptual 
Quality

Compression 
Rate

Good VAE

Align latents with 

embeddings from 
other large vision 

models (REPA, 

https://arxiv.org/a
bs/2410.06940) 

Black Forest Labs. https://bfl.ai/research/representation-comparison

Add BatchNorm 

and more 
channels in the 

latent space

Do spatial 

packing

https://arxiv.org/abs/2410.06940
https://arxiv.org/abs/2410.06940
https://arxiv.org/abs/2410.06940
https://bfl.ai/research/representation-comparison
https://bfl.ai/research/representation-comparison
https://bfl.ai/research/representation-comparison
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The design space of text-to-image generation

The design space of text-to-image generation

Training Model Text Encoding

• Which training paradigm 

should we choose

• How to deal with high 

resolution data

• Model architecture

• How to input text into an 

image generative model
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What kind of model architecture should we use?
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Attempt 1: Ofc we can use our good old

Net

Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2020. https://arxiv.org/abs/1505.04597

https://arxiv.org/abs/1505.04597
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Attempt 2: Actually we can use a transformer (DiT) too

Peebles & Xie. ”Scalable Diffusion Models with Transformers”. ICCV 2023. https://arxiv.org/pdf/2212.09748

2D input => 2D 

positional 
embeddings

Time step 

conditioning injected 
into every layer

https://arxiv.org/pdf/2212.09748
https://arxiv.org/pdf/2212.09748
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The design space of text-to-image generation

The design space of text-to-image generation

Training Model Text Encoding

• Which training paradigm 

should we choose

• How to deal with high 

resolution data

• Model architecture

• How to input text into an 

image generative model
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How to input text into an image generative model?
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How to input text into an image generative model?

1. Somehow encode text into some feature vectors

2. Somehow squish the encoded text features into the diffusion model
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Text encoder

What we want:

• Can capture semantics well

• Can encode long sentences

• Can attend to details

• Can differentiate between different spatial relationships described in text
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Attempt 1: Learn text features with images
Positive Examples

Negative Examples
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Positive examples

“dog” “a cute dog” “a Cavalier King 
Charles Spaniel”

Same thing, different “augmentations” => Positive examples
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Negative Examples

“dog” “cat” “puppy 
plushie”

“a 
CMU 
Prof”

“a CMU 
PhD 

student”Positive 
Examples

Negative Examples
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Negative Examples

“dog” “cat” “puppy 
plushie”

“a 
CMU 
Prof”

“a CMU 
PhD 

student”Positive 
Examples

Negative Examples
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Negative Examples

“dog” “cat” “puppy 
plushie”

“a 
CMU 
Prof”

“a CMU 
PhD 

student”Positive 
Examples

Negative Examples
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Negative Examples

“dog” “cat” “puppy 
plushie”

“a 
CMU 
Prof”

“a CMU 
PhD 

student”Positive 
Examples

Negative Examples

Do this for 400 Million image-text pairs
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Attempt 1: CLIP -- Contrastive Language-Image Pretraining

Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. https://arxiv.org/pdf/2103.00020

https://arxiv.org/pdf/2103.00020
https://arxiv.org/pdf/2103.00020
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CLIP is good but…

It cannot tell these apart!

38

Thrush et al. “Winoground: Probing vision and language models for visio-linguistic compositionality”. CVPR 2022. https://arxiv.org/pdf/2204.03162.pdf 

https://arxiv.org/pdf/2204.03162.pdf
https://arxiv.org/pdf/2204.03162.pdf
https://arxiv.org/pdf/2204.03162.pdf
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CLIP is good but…

• It cannot handle spatial relation ships well

• It cannot handle negations well

• It cannot handle counts well

• The length limit is 77 tokens

• Sometimes ignores some details

39
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CLIP is not a very good text encoder!

What we want:

• Can capture semantics well

• Can encode long sentences

• Can attend to details

• Can differentiate between different spatial relationships described in text
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Attempt 2: Add another text encoder on top of CLIP 
for better language understanding

Esser et al. “Scaling Rectified Flow Transformers for High-Resolution Image Synthesis”. https://arxiv.org/pdf/2403.03206

Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”. JMLR 2020. https://arxiv.org/pdf/1910.10683

https://arxiv.org/pdf/2403.03206
https://arxiv.org/pdf/2403.03206
https://arxiv.org/pdf/1910.10683
https://arxiv.org/pdf/1910.10683
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Attempt 3: Why not just use an LLM/VLM/MLLM lol

Qwen Team. “Qwen3-VL Technical Report”. https://arxiv.org/pdf/2511.21631

https://arxiv.org/pdf/2511.21631
https://arxiv.org/pdf/2511.21631
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How to input text into an image generative model?

1. Somehow encode text into some feature vectors

2. Somehow squish the encoded text features into the diffusion model
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Attempt 1: Cross Attention

Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion Models”. CVPR 2022. https://arxiv.org/pdf/2112.10752

https://arxiv.org/pdf/2112.10752
https://arxiv.org/pdf/2112.10752
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Attempt 2: Double Stream Multimodal-DiT

Esser et al. “Scaling Rectified Flow Transformers for High-Resolution Image Synthesis”. https://arxiv.org/pdf/2403.03206

https://arxiv.org/pdf/2403.03206
https://arxiv.org/pdf/2403.03206
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Attempt 2: Double stream -> merged stream MM-DiT

Black Forest Labs. “FLUX.1 Kontext: Flow Matching for In-Context Image Generation and Editing in Latent Space”. https://arxiv.org/pdf/2506.15742

https://arxiv.org/pdf/2506.15742
https://arxiv.org/pdf/2506.15742
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Attempt 3: Single stream MM-DiT

Z-Image Team, Alibaba Group. “Z-Image: An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer”. https://arxiv.org/pdf/2511.22699

https://arxiv.org/pdf/2511.22699
https://arxiv.org/pdf/2511.22699
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Attempt 3.5: “Native multimodal model”

Zhou et al. “Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model”. https://arxiv.org/pdf/2408.11039

https://arxiv.org/pdf/2408.11039
https://arxiv.org/pdf/2408.11039
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Attempt 3.5: “Native multimodal model”

Tencent Hunyuan Foundation Model Team. “HunyuanImage 3.0 Technical Report”. https://arxiv.org/pdf/2408.11039

https://arxiv.org/pdf/2408.11039
https://arxiv.org/pdf/2408.11039
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50My guess on how Nano Banana & GPT-4o Image work

Transformer

Prompt: “Generate a cute cat …” Noisy 
latent

<think> The user asked to generate a cute cat … <\think> A cat with …  

Velocity in 
latent

Reasoning Image Prompt

Maybe some 

visual planning 
tokens

Next token prediction Flow matching



51
51
51

51My guess on how Nano Banana & GPT-4o Image work

Multimodal LLM

Prompt: “Generate a cute cat …”

<think> The user asked to generate a cute cat … <\think> A cat with …  

Reasoning Image Prompt
Maybe some visual 

planning tokens

MM-DiT

Noisy latent

Velocity in latent

Condition
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The design space of text-to-image generation

The design space of text-to-image generation

Training Model Text Encoding

• Training paradigm

• DDPM

• Flow matching

• Latent Space

• VQ-VAE/VQGAN

• Advanced VAE

• Model architecture

• U-Net

• DiT

• Text Encoder

• CLIP

• CLIP + T5

• LLM/VLM/MLLM

• Text Conditioning

• Cross Attention

• MM-DiT

• Native MM
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The design space of text-to-image generation

The design space of text-to-image generation

Training Model Text Encoding

• Training paradigm

• DDPM

• Flow matching

• Latent Space

• VQ-VAE/VQGAN

• Advanced VAE

• Model architecture

• U-Net

• DiT

• Text Encoder

• CLIP

• CLIP + T5

• LLM/VLM/MLLM

• Text Conditioning

• Cross Attention

• MM-DiT

• Native MM

This is Stable Diffusion 1 & 2!
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The design space of text-to-image generation

The design space of text-to-image generation

Training Model Text Encoding

• Training paradigm

• DDPM

• Flow matching

• Latent Space

• VQ-VAE/VQGAN

• Advanced VAE

• Model architecture

• U-Net

• DiT

• Text Encoder

• CLIP

• CLIP + T5

• LLM/VLM/MLLM

• Text Conditioning

• Cross Attention

• MM-DiT

• Native MM

This is Stable Diffusion 3 & Flux 1!
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The design space of text-to-image generation

The design space of text-to-image generation

Training Model Text Encoding

• Training paradigm

• DDPM

• Flow matching

• Latent Space

• VQ-VAE/VQGAN

• Advanced VAE

• Model architecture

• U-Net

• DiT

• Text Encoder

• CLIP

• CLIP + T5

• LLM/VLM/MLLM

• Text Conditioning

• Cross Attention

• MM-DiT

• Native MM

This is Flux 2, Z-Image, Qwen-Image, etc!
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The design space of text-to-image generation

The design space of text-to-image generation

Training Model Text Encoding

• Training paradigm

• DDPM

• Flow matching

• Latent Space

• VQ-VAE/VQGAN

• Advanced VAE

• Model architecture

• U-Net

• DiT

• Text Encoder

• CLIP

• CLIP + T5

• LLM/VLM/MLLM

• Text Conditioning

• Cross Attention

• MM-DiT

• Native MM

This is Transfusion, Hunyuan 3.0, etc!
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The design space of text-to-image generation

The design space of text-to-image generation

Training Model Text Encoding

• Training paradigm

• DDPM

• Flow matching

• Latent Space

• VQ-VAE/VQGAN

• Advanced VAE

• Model architecture

• U-Net

• DiT

• Text Encoder

• CLIP

• CLIP + T5

• LLM/VLM/MLLM

• Text Conditioning

• Cross Attention

• MM-DiT

• Native MM

(Probably also Nano Banana & GPT-4o Image)
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We are now in the realm of the state-of-the-arts

• 2/3 (Tue): How to use diffusion/flow models for robotics, control & decision 

making (Max Simchowitz, MLD Prof.)

• 2/5 (Thur): Text-to-image models and SOTA techniques

• 2/10 (Tue): How to sample from diffusion/flow models with a single step

• Distillation

• Consistency models

• Flow maps

• 2/12 (Thur): Real-time generation techniques for video (Linqi (Alex) Zhou, Luma 

AI)
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