

Carnegie Mellon University

Lecture 7: Text-to-Image Generation & SOTA Models

Yutong (Kelly) He

10-799 *Diffusion & Flow Matching*, Feb 5th, 2026

AWS Credits are finally here

Dhruv from AWS is here to show us some quick tutorials

Quiz time!

10 minutes

Closed-book

Pen & Paper

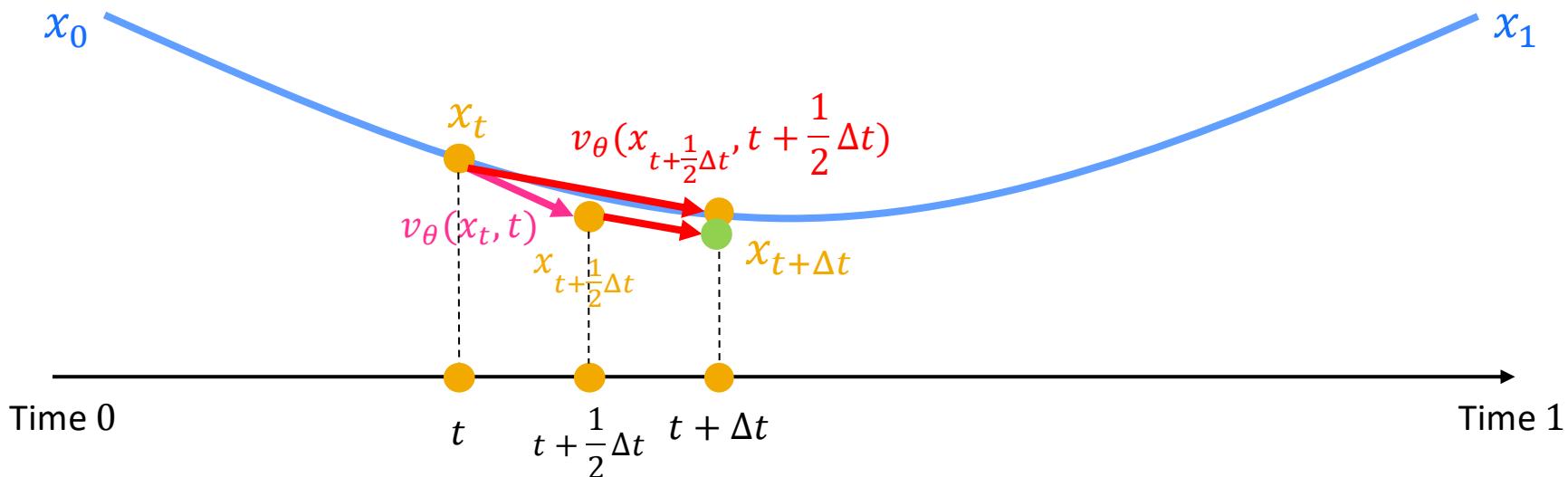
100

If you don't want to stay for the lecture, feel free to leave after
submitting your quiz!

Housekeeping Announcements

- Homework 3 is out! <https://kellyyutonghe.github.io/10799S26/homework/>
 - Due date: 2/15 Sun, Late Due date: 2/17 Mon
 - Start early and finish early if possible! This way you'll have more time for HW 4
 - Poster PDF submission 2/25 Wed
 - Poster Session 2/26 Thur
 - No class on 2/24 Tue
- Will have a poll about AWS credit on Discord soon

Correction – Midpoint solver



Previously we learned about the design space of diffusion models

The design space of diffusion models

Training

- Prefixed noise schedule
- Training noise sampling schedule
- Loss weighting w.r.t. time

Model

- Reparameterization
- Input/Output scaling
- How to do time conditioning

Sampling

- Solver
- Sampling time noise schedule
- Number of time steps

Last time we learned how to turn an unconditional diffusion into a conditional one!

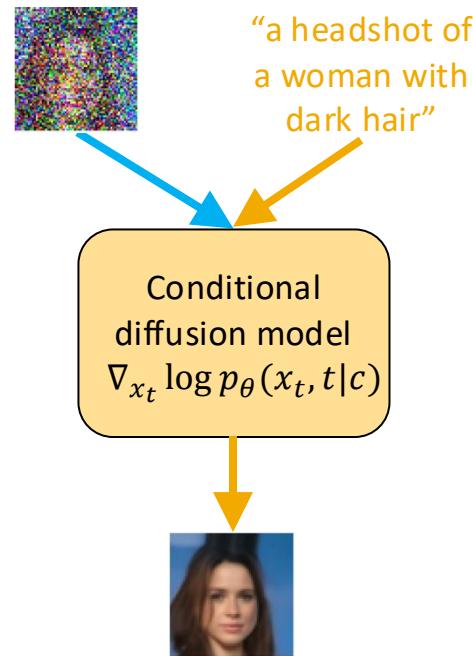
Training-based methods:

- Classifier guidance diffusion
- Classifier free guidance (if you don't already have a conditional model)

Training-free methods:

- DPS
- MPGD
- SDEdit
- Classifier free guidance (if you already have a conditional model)

Today we will be looking at this one specific type of condition – Text!



The design space of text-to-image generation

The design space of text-to-image generation

The design space of text-to-image generation

The design space of text-to-image generation

Training

- Which training paradigm should we choose

Model

- How to deal with high resolution data
- Model architecture

Text Encoding

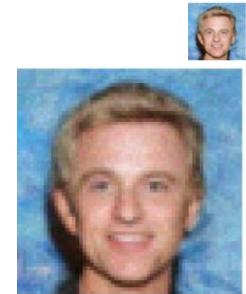
- How to input text into an image generative model

Images are super super high dimensional data

In HW we are dealing with 64x64 images

- $64 \times 64 \times 3 = 12,288 \Rightarrow 18M$ model parameters

Now what if we need to train models for 256x256 images



- $256 \times 256 \times 3 = 196,608 \Rightarrow$ probably in the hundreds of M's parameters

What about 1080p resolution?

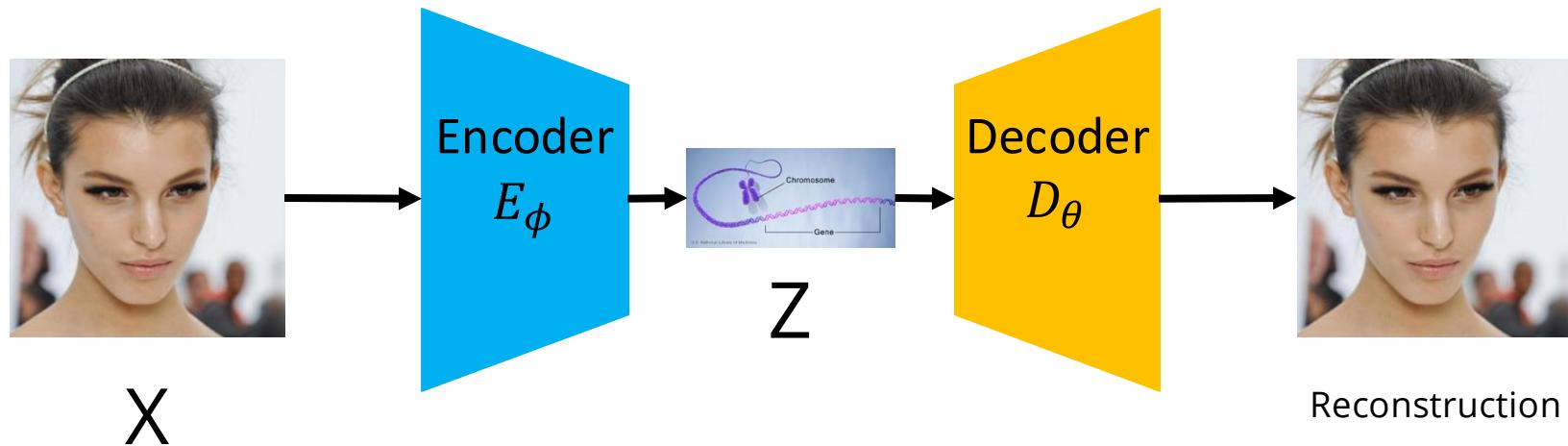
- $1920 \times 1080 \times 3 = \mathbf{6,220,800} \Rightarrow$ probably in the billions of parameters

And what about 4k Images?

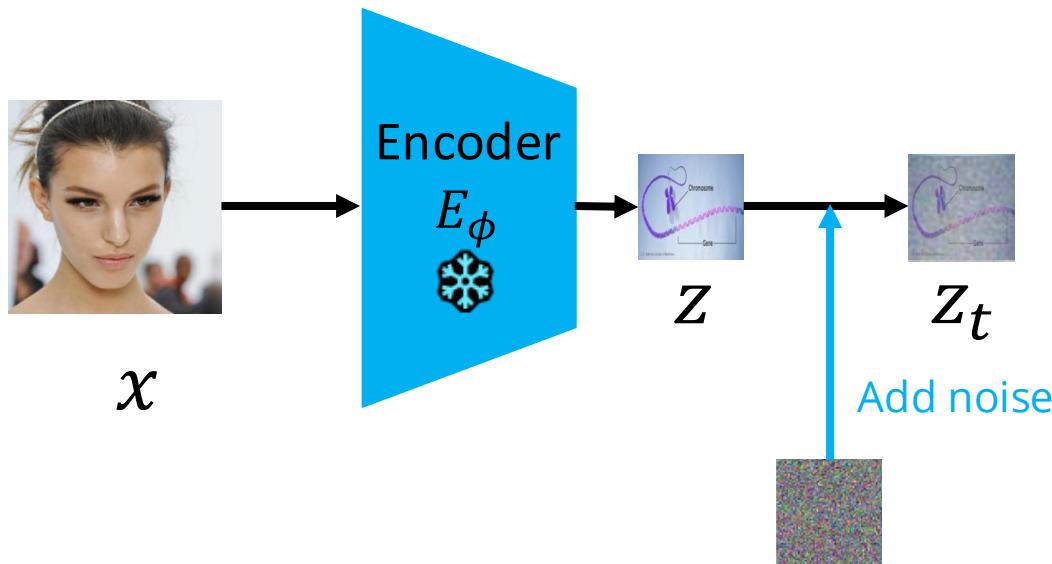
- $3840 \times 2560 \times 3 = \mathbf{29,491,200} \Rightarrow$ probably dozens of billions of parameters

How to deal with high resolution data?

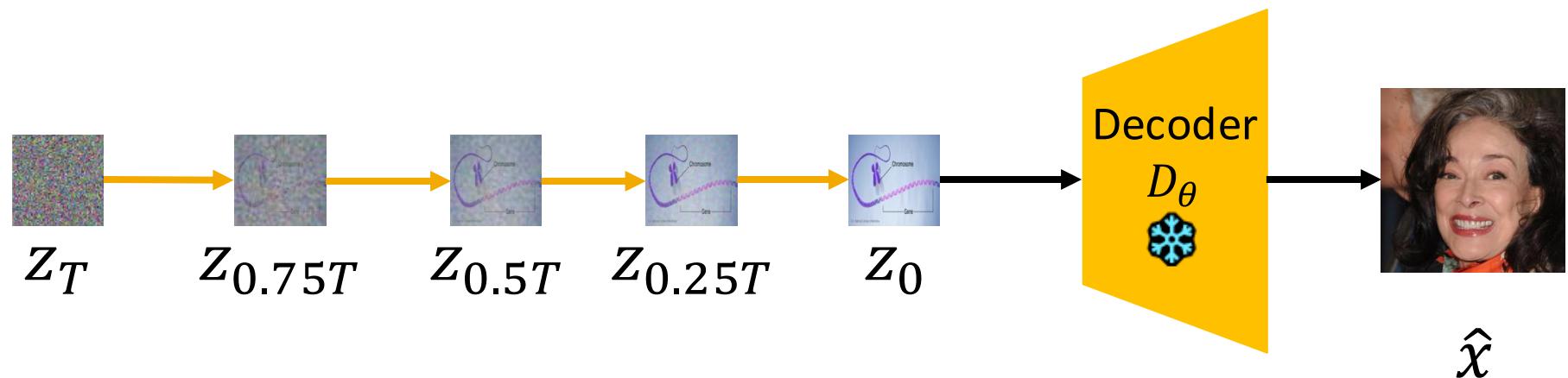
Idea: Compression via an autoencoder



Latent diffusion models (forward process)

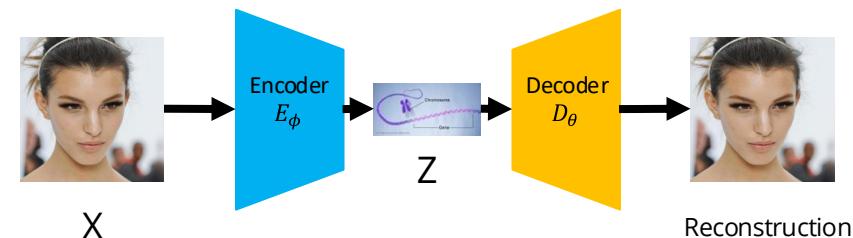


Latent diffusion models (reverse process)

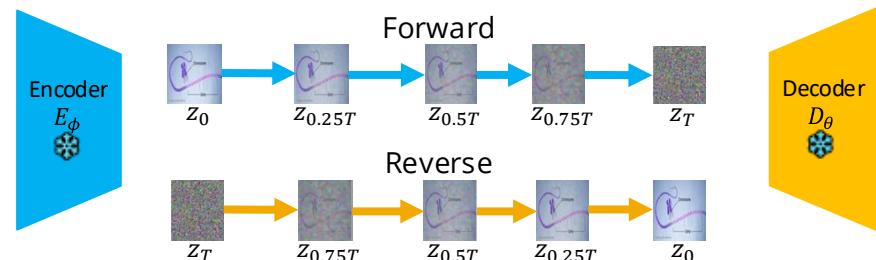


Latent diffusion models

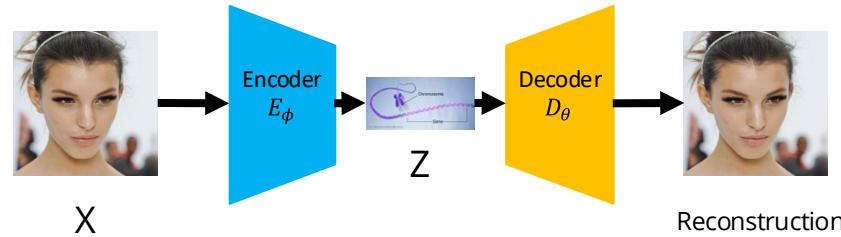
1. Pre-train an autoencoder on your data



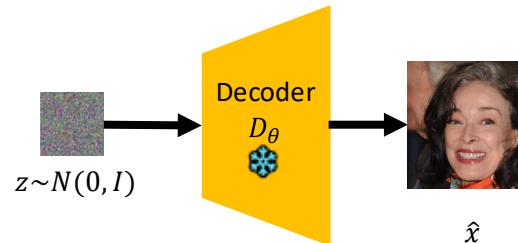
2. Freeze your pre-trained autoencoder, and then train a diffusion model in the latent space of your autoencoder



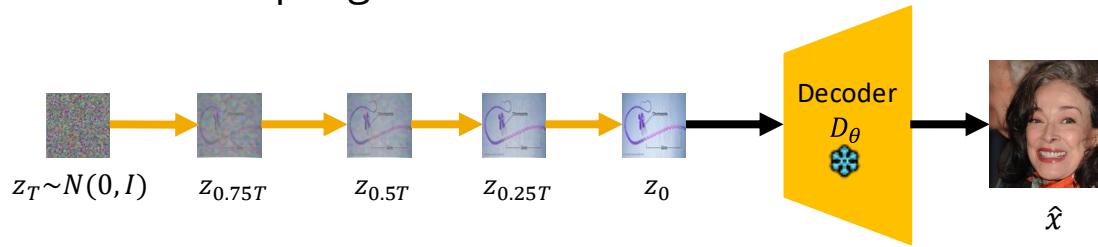
Vanilla VAE v.s. Latent Diffusion



- Vanilla VAE sampling:



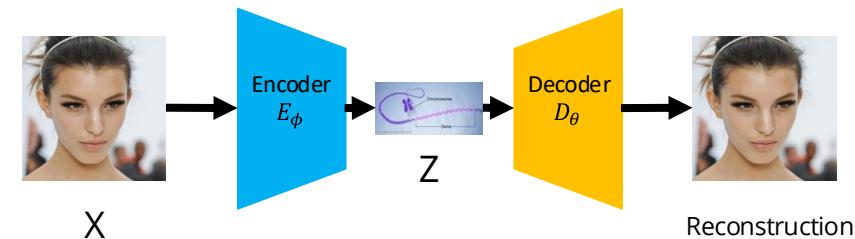
- Latent diffusion sampling:



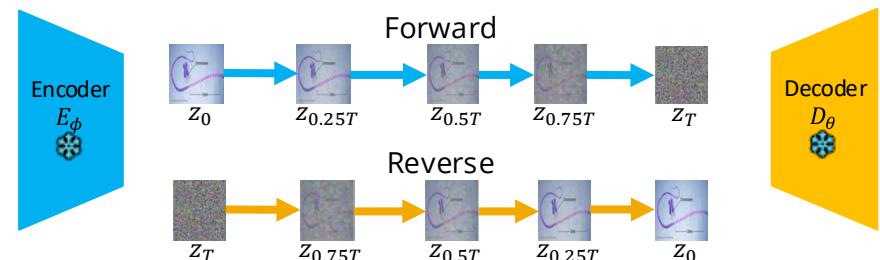
Latent diffusion models

1. Pre-train an **autoencoder** on your data

Which
autoencoder?



2. Freeze your pre-trained autoencoder, and then train a diffusion model in the latent space of your autoencoder

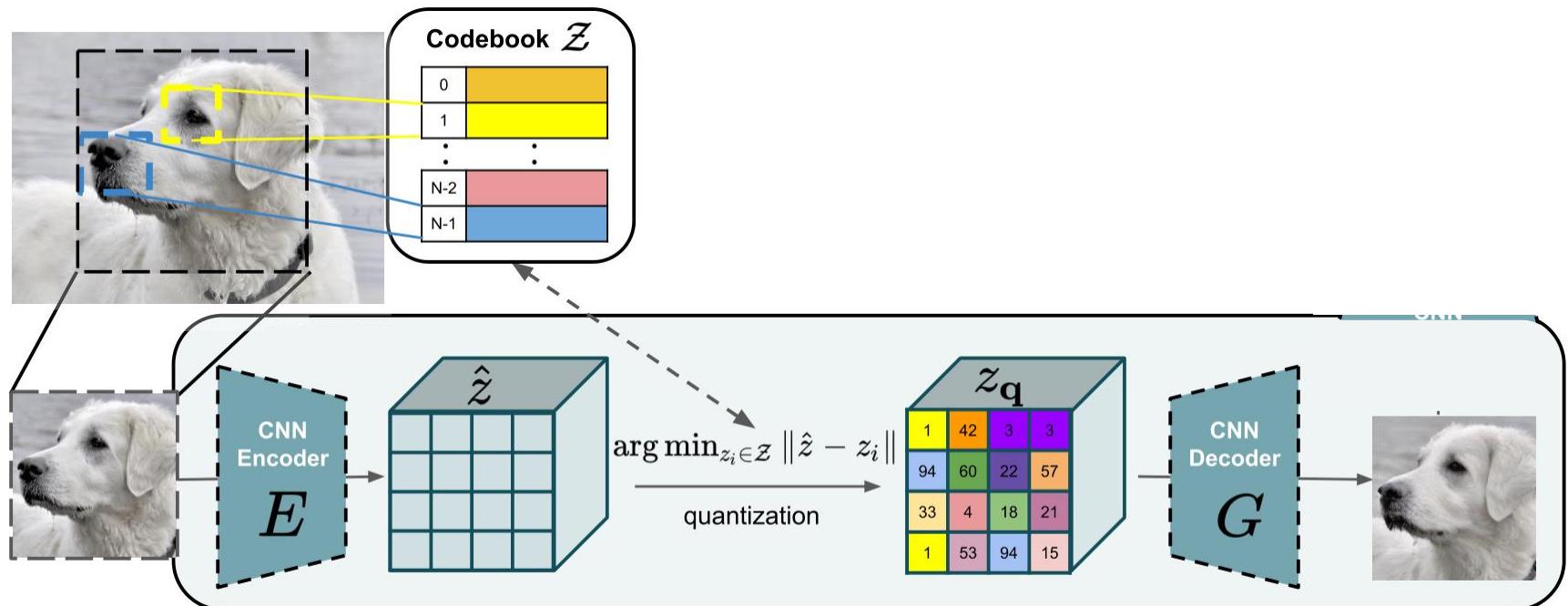


Attempt 1: A normal VAE

Vanilla VAE has a lot of problems:

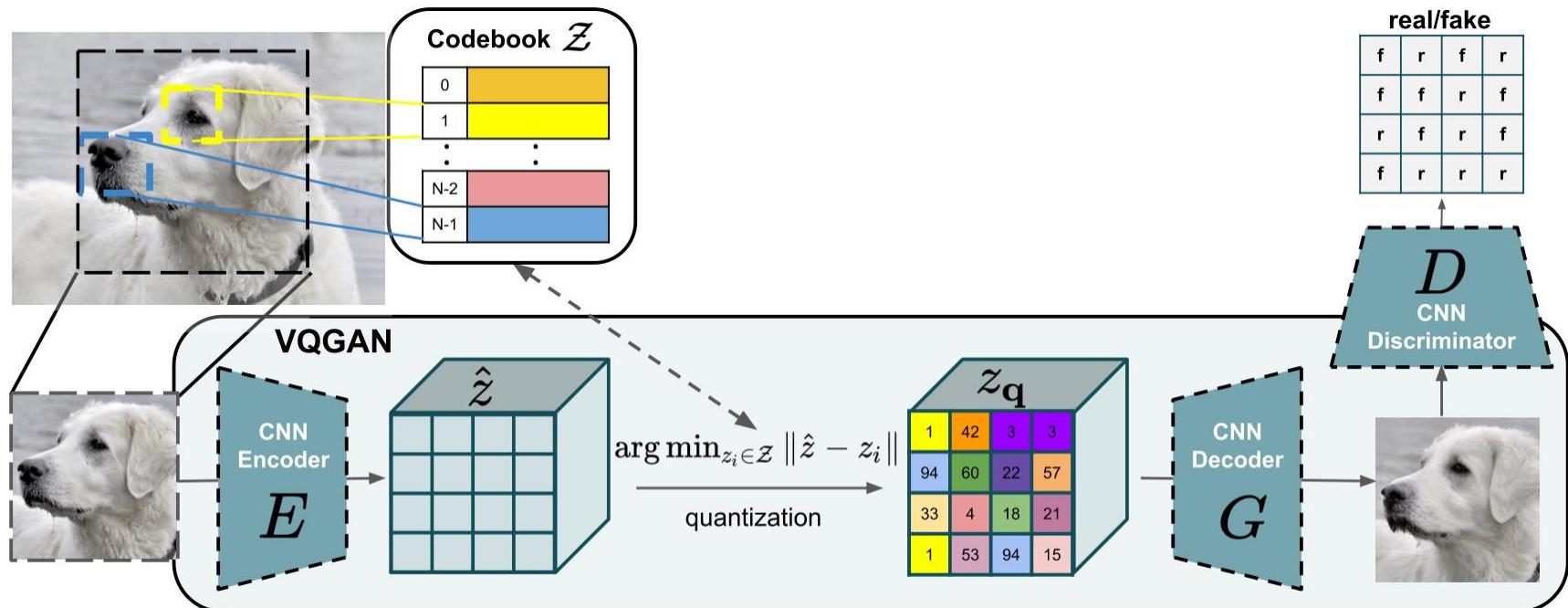
- The “semantics” are vague
- Can have the “average face” problem – generations are blurry and overly smoothed out
 - Sometimes there’s even a posterior collapse problem: the decoder just completely ignores the sampled latent and just do its own thing
- Difficult to be compatible with transformers

Attempt 2: Vector-Quantized VAE (VQ-VAE)



Carnegie
Mellon
University

Attempt 2.5: Vector-Quantized GAN (VQGAN)



Attempt 3: Flux 2, making continuous VAE work

The three-way tradeoff of a VAE made for latent diffusion

Add BatchNorm
and more
channels in the
latent space

Learnability

Good VAE

Compression
Rate

Perceptual
Quality

Align latents with
embeddings from
other large vision
models (REPA,
<https://arxiv.org/abs/2410.06940>)

Do spatial
packing

Carnegie
Mellon
University

The design space of text-to-image generation

The design space of text-to-image generation

Training

- Which training paradigm should we choose

Model

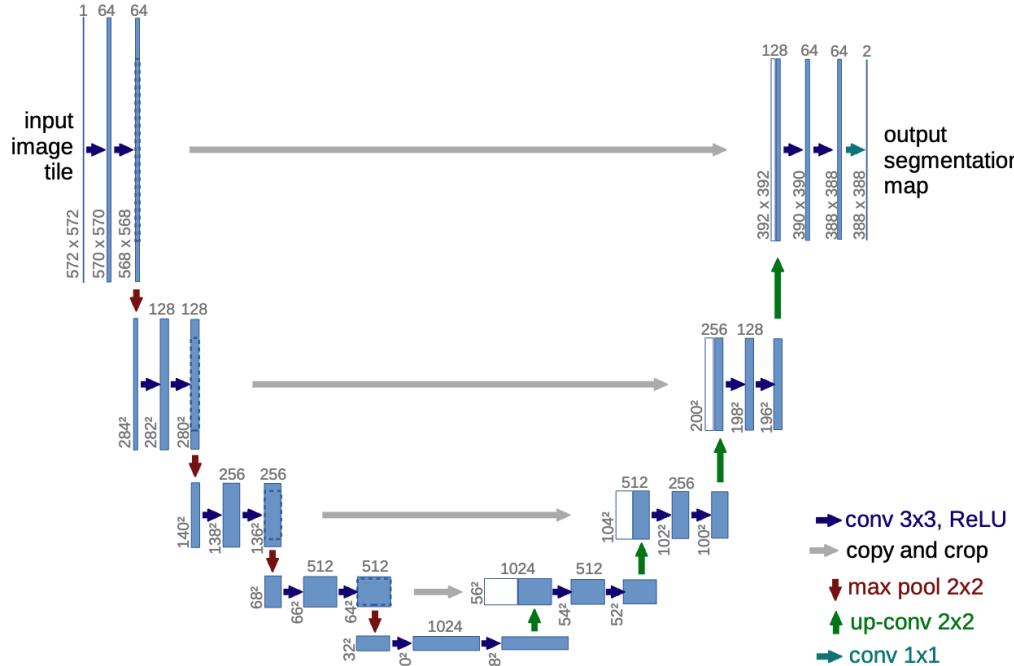
- How to deal with high resolution data
- Model architecture

Text Encoding

- How to input text into an image generative model

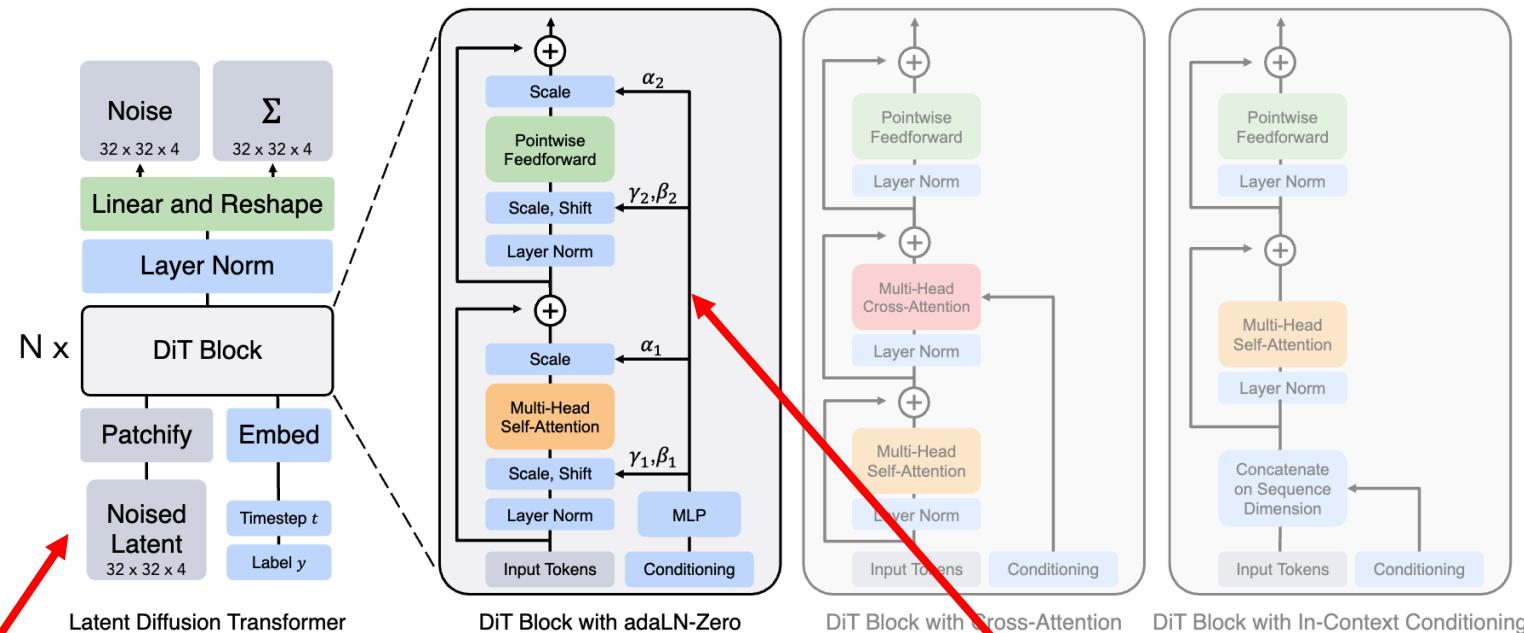
What kind of model architecture should we use?

Attempt 1: Ofc we can use our good old



Net

Attempt 2: Actually we can use a transformer (DiT) too



2D input => 2D
positional
embeddings

Time step
conditioning injected
into every layer

The design space of text-to-image generation

The design space of text-to-image generation

Training

- Which training paradigm should we choose

Model

- How to deal with high resolution data
- Model architecture

Text Encoding

- How to input text into an image generative model

How to input text into an image generative model?

How to input text into an image generative model?

1. Somehow encode text into some feature vectors
2. Somehow squish the encoded text features into the diffusion model

Text encoder

What we want:

- Can capture semantics well
- Can encode long sentences
- Can attend to details
- Can differentiate between different spatial relationships described in text

Attempt 1: Learn text features with images

Positive Examples

Negative Examples

Positive examples

“dog”

“a cute dog”

“a Cavalier King
Charles Spaniel”

Carnegie
Mellon

Same thing, different “augmentations” => Positive examples

Negative Examples

“dog”

Positive
Examples

Negative Examples

“cat”

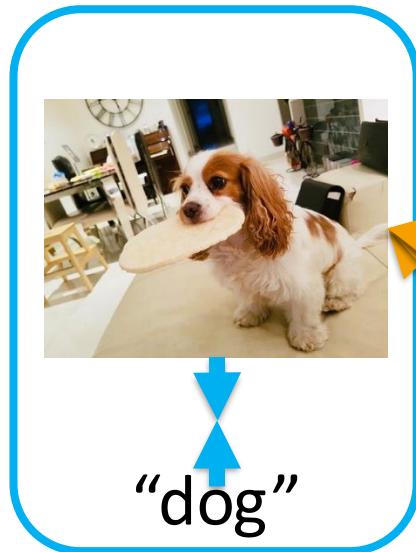
“puppy
plushie”

“a CMU
PhD
student”

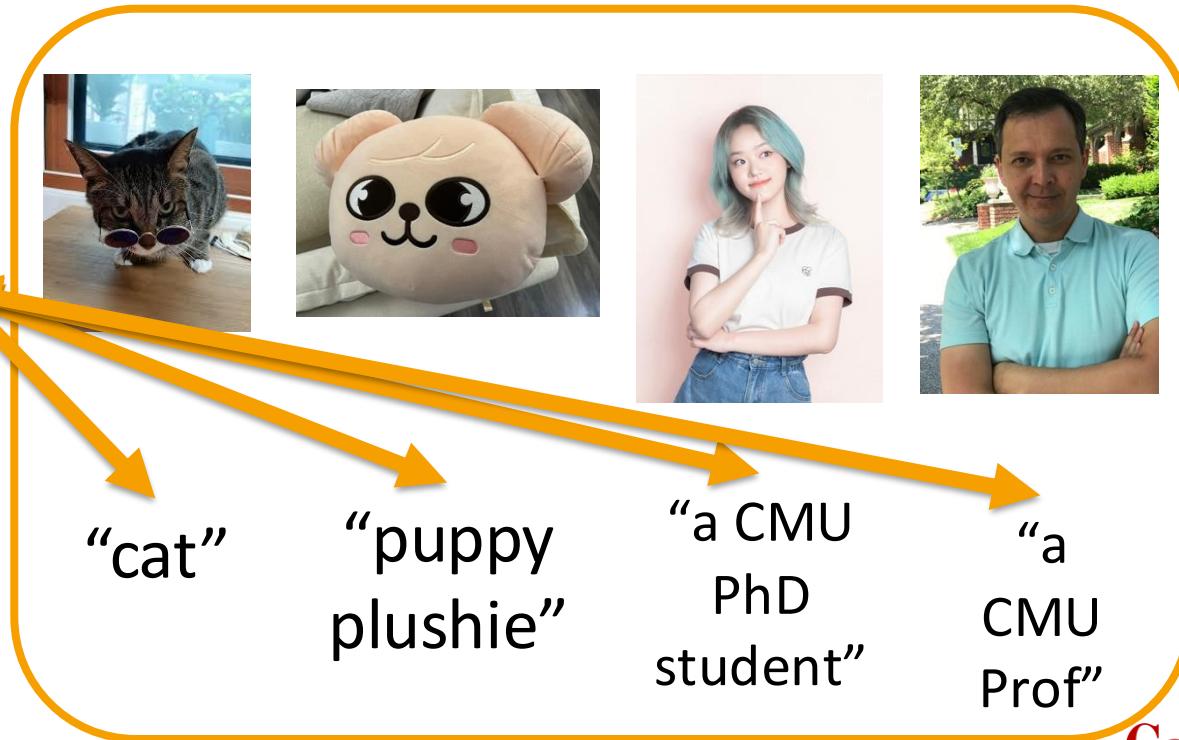
“a
CMU
Prof”

Negative Examples

Negative Examples

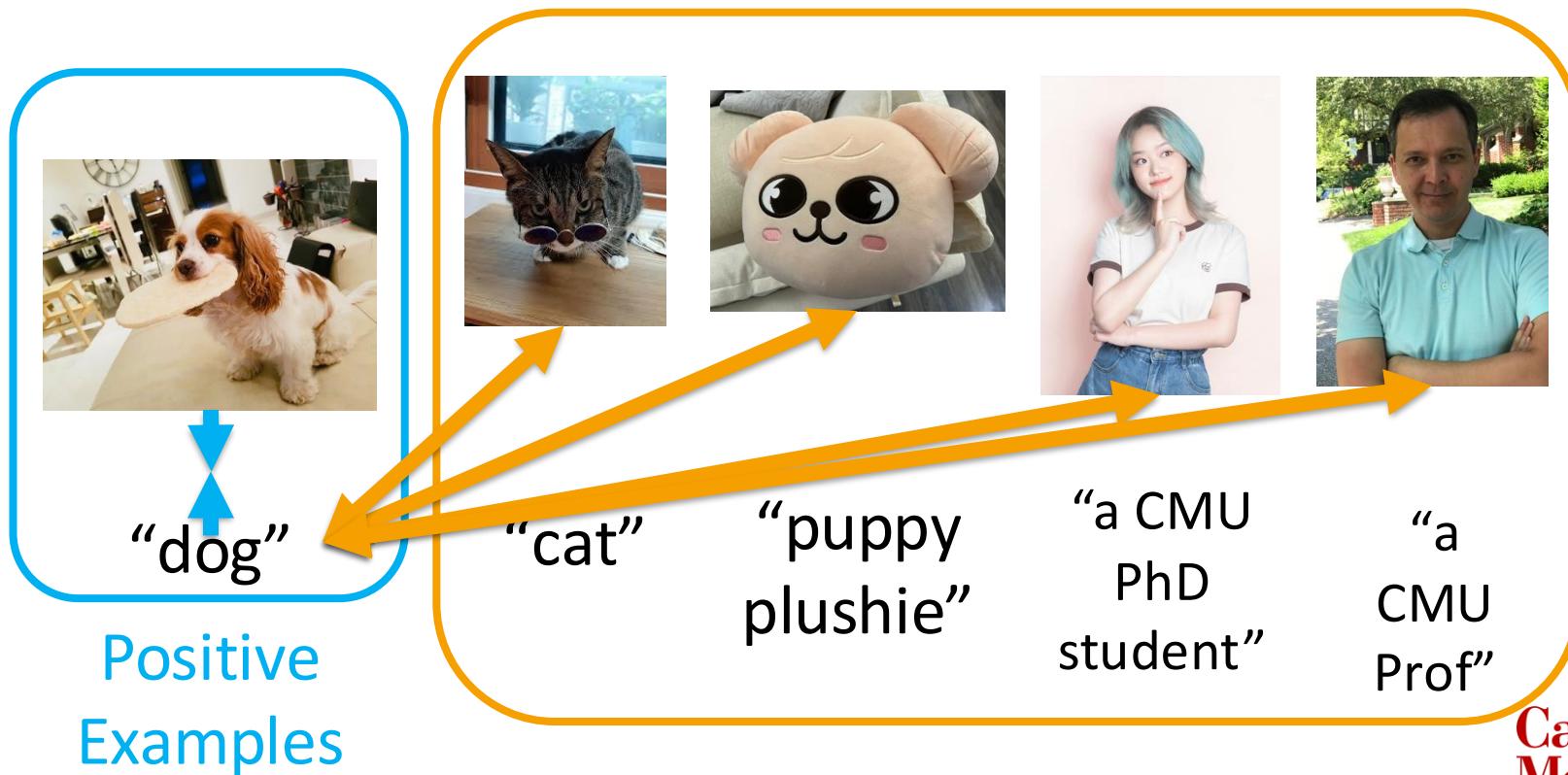


Positive
Examples



Negative Examples

Negative Examples



Negative Examples

Negative Examples

Do this for 400 Million image-text pairs

“dog”

Positive
Examples

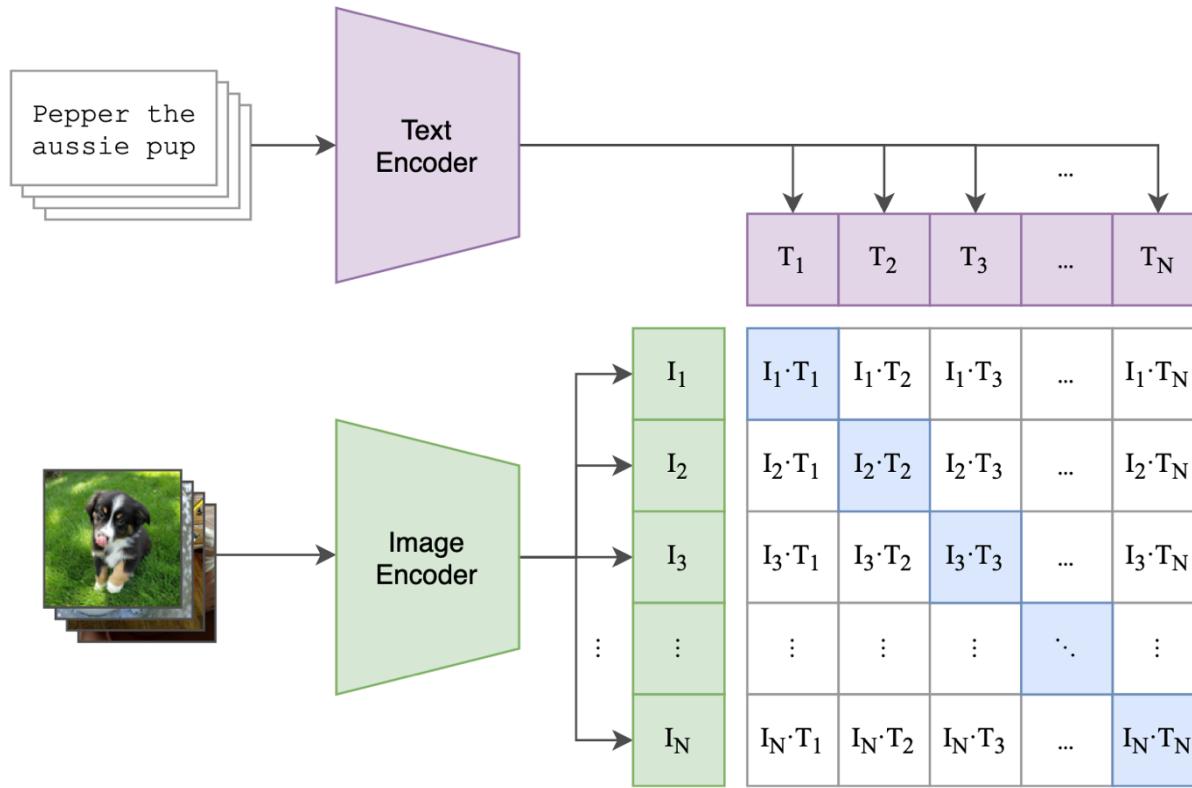
“cat”

“puppy
plushie”

“a CMU
PhD
student”

“a
CMU
Prof”

Attempt 1: CLIP -- Contrastive Language-Image Pretraining



CLIP is good but...

It cannot tell these apart!

(a) some plants surrounding a lightbulb

(b) a lightbulb surrounding some plants

CLIP is good but...

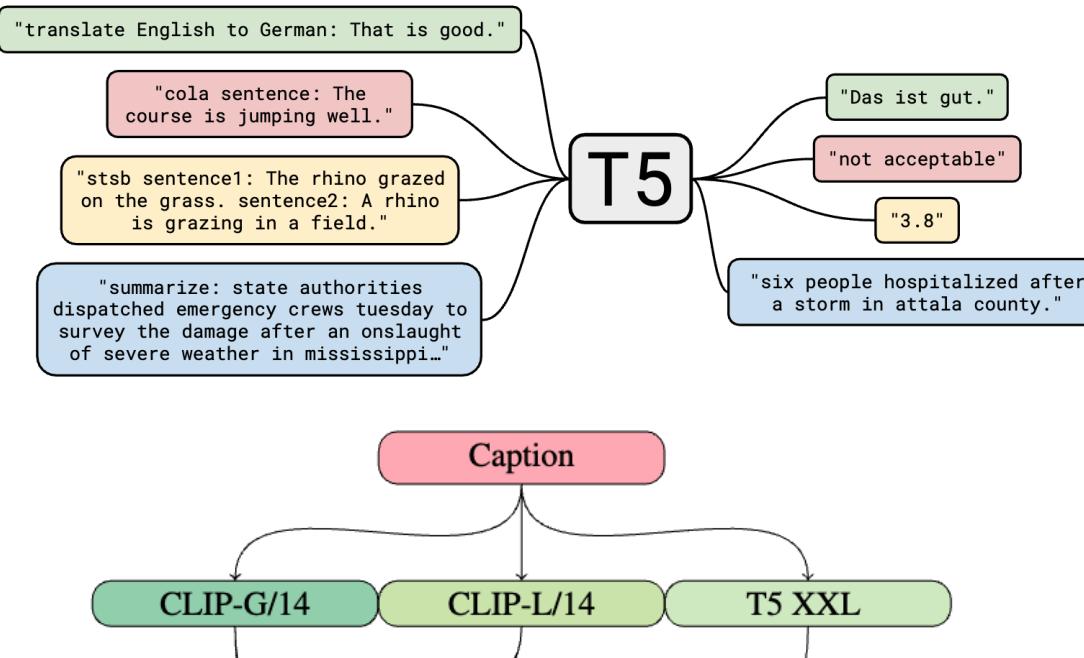
- It cannot handle spatial relationships well
- It cannot handle negations well
- It cannot handle counts well
- The length limit is 77 tokens
- Sometimes ignores some details

CLIP is not a very good text encoder!

What we want:

- Can capture semantics well
- Can encode long sentences
- Can attend to details
- Can differentiate between different spatial relationships described in text

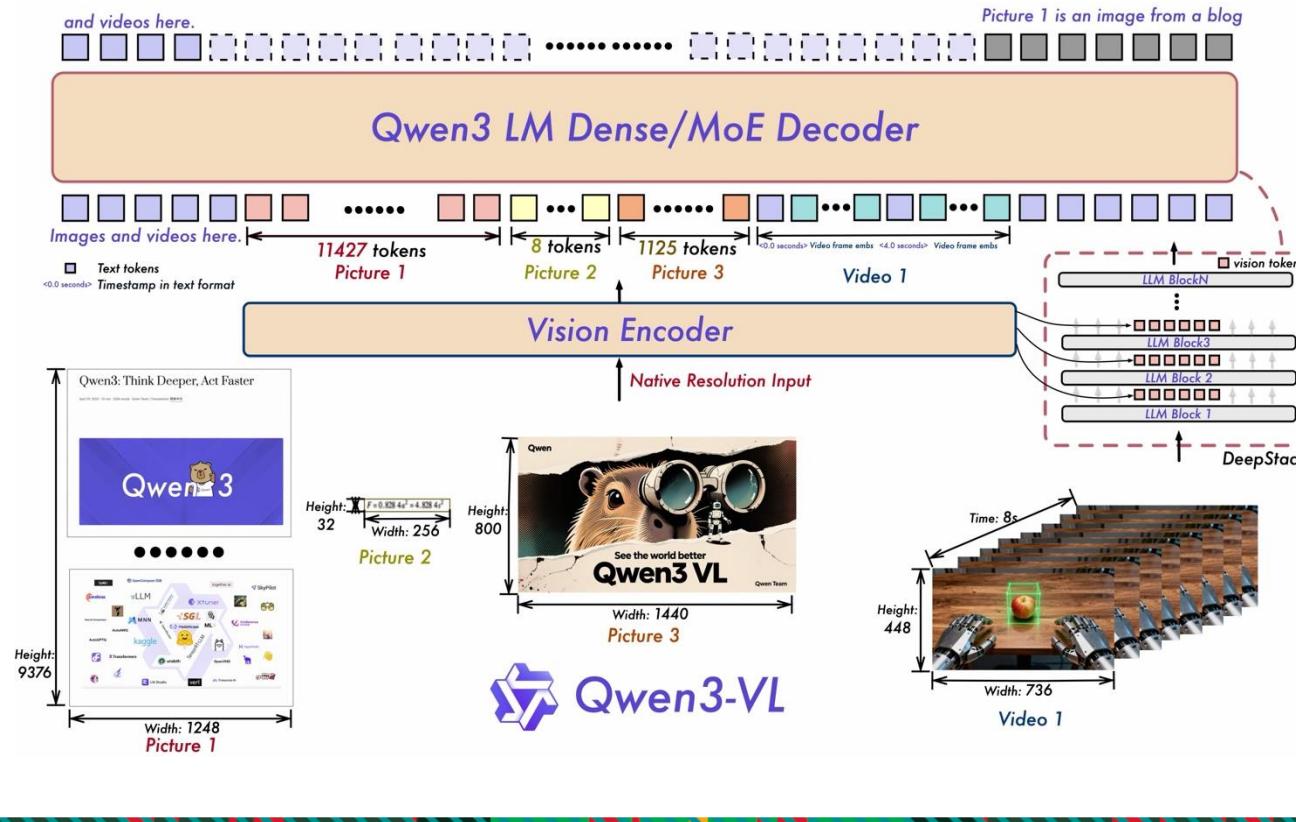
Attempt 2: Add another text encoder on top of CLIP for better language understanding



Raffel et al. "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". JMLR 2020. <https://arxiv.org/pdf/1910.10683.pdf>

Esser et al. "Scaling Rectified Flow Transformers for High-Resolution Image Synthesis". <https://arxiv.org/pdf/2403.03206.pdf>

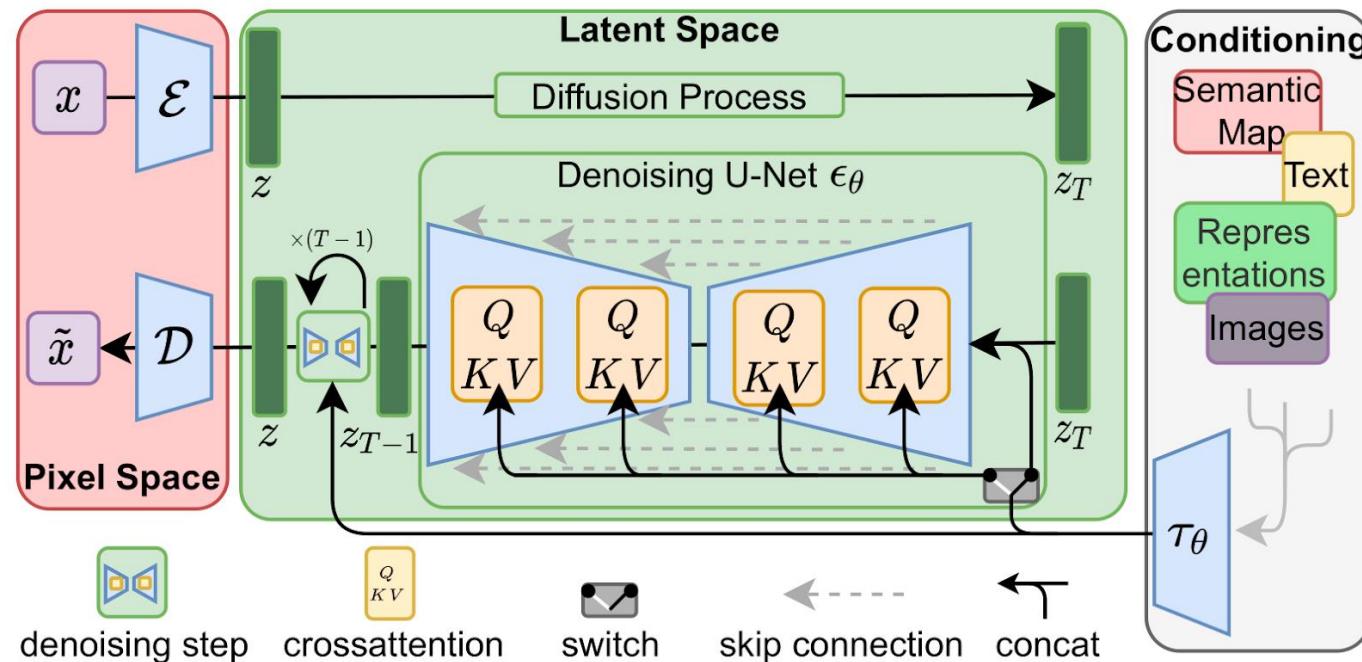
Attempt 3: Why not just use an LLM/VLM/MLLM lol



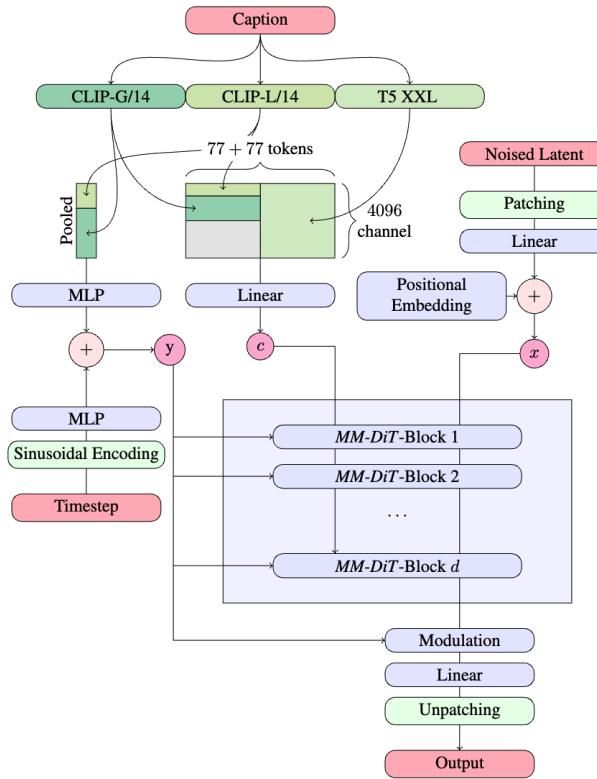
How to input text into an image generative model?

1. Somehow encode text into some feature vectors
2. Somehow squish the encoded text features into the diffusion model

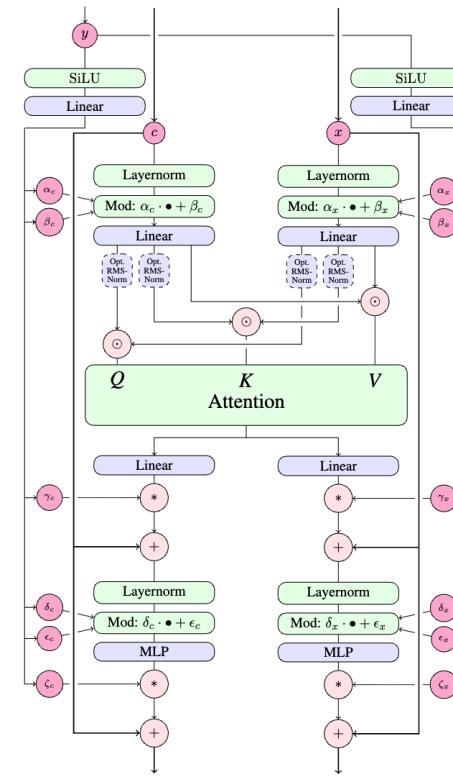
Attempt 1: Cross Attention



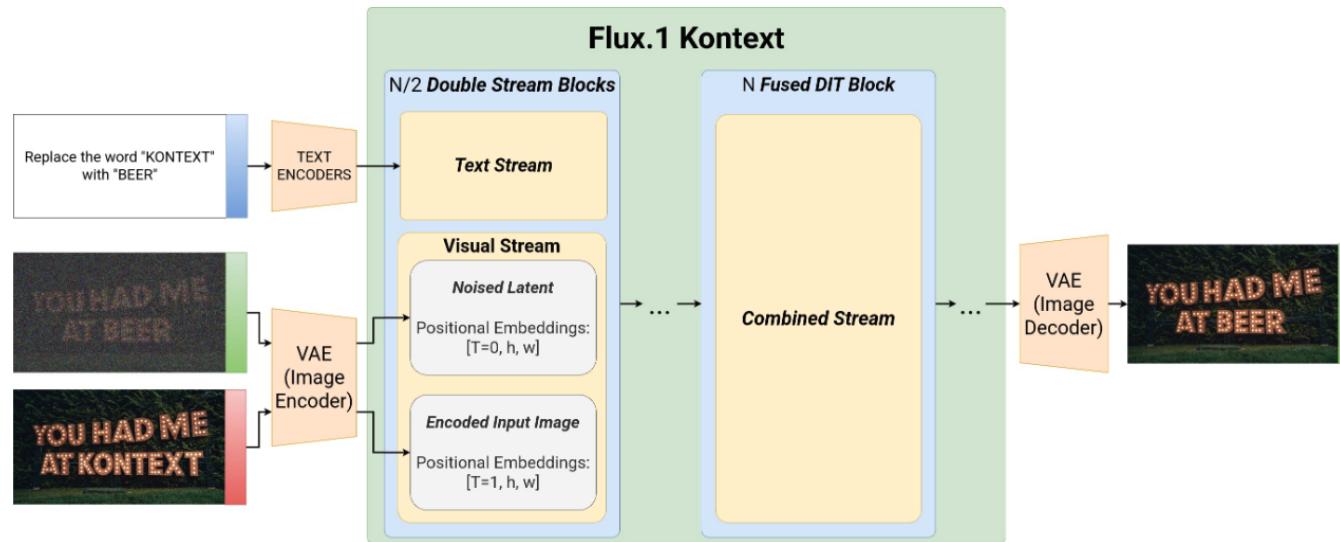
Attempt 2: Double Stream Multimodal-DiT



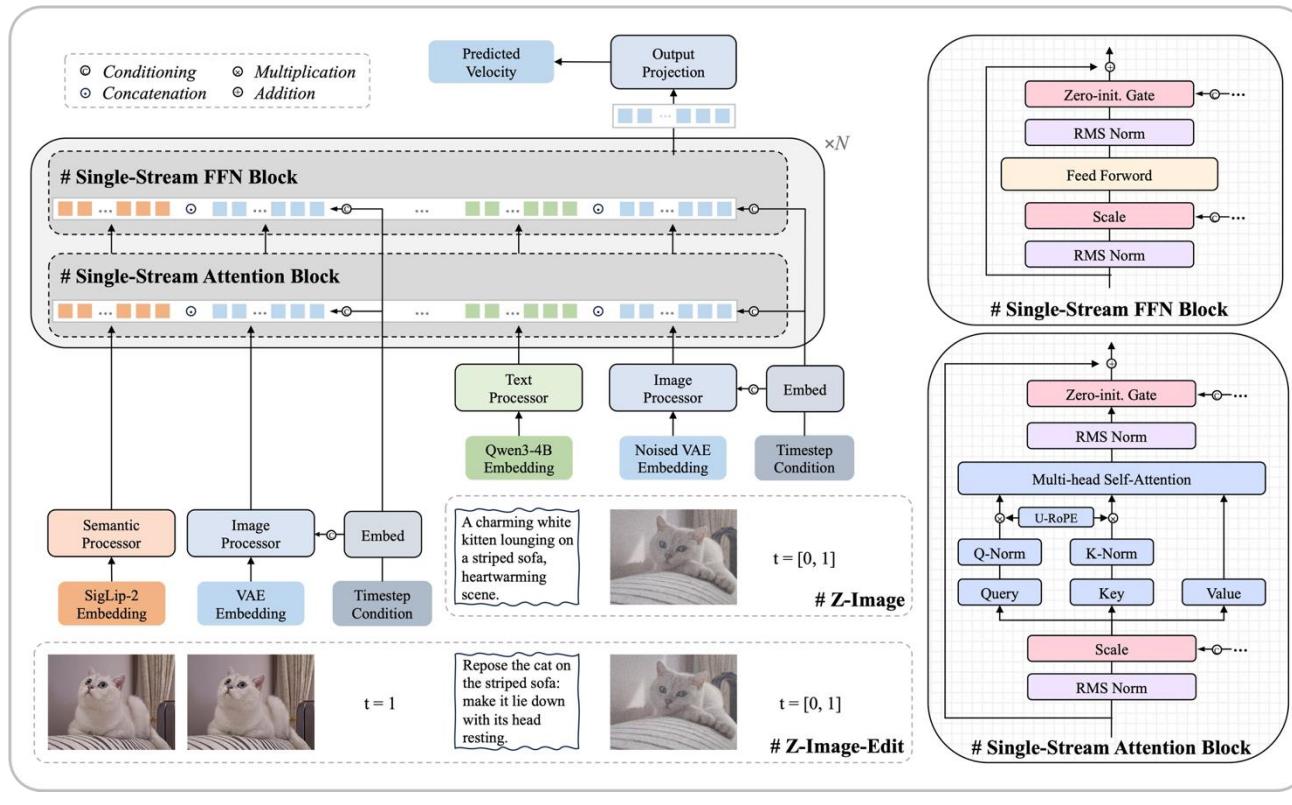
(a) Overview of all components.



Attempt 2: Double stream -> merged stream MM-DiT



Attempt 3: Single stream MM-DiT



Attempt 3.5: “Native multimodal model”

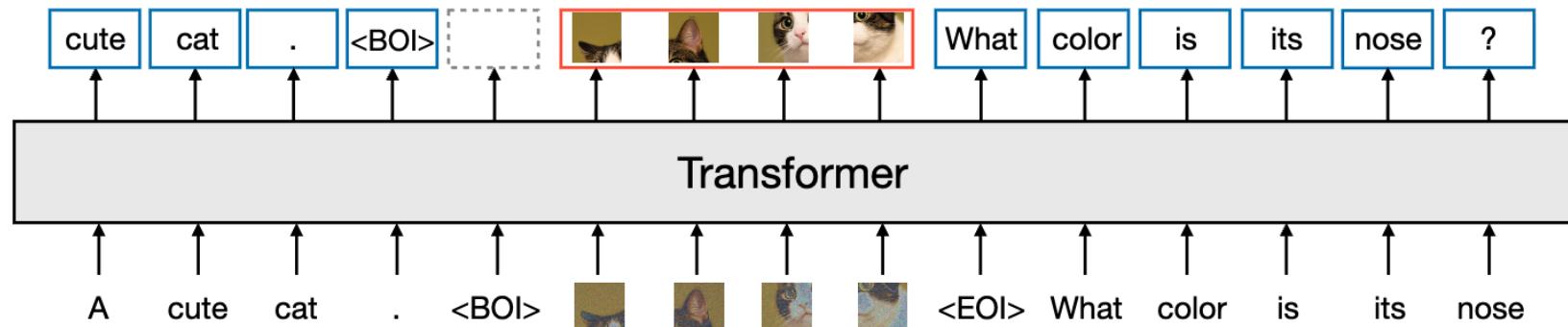
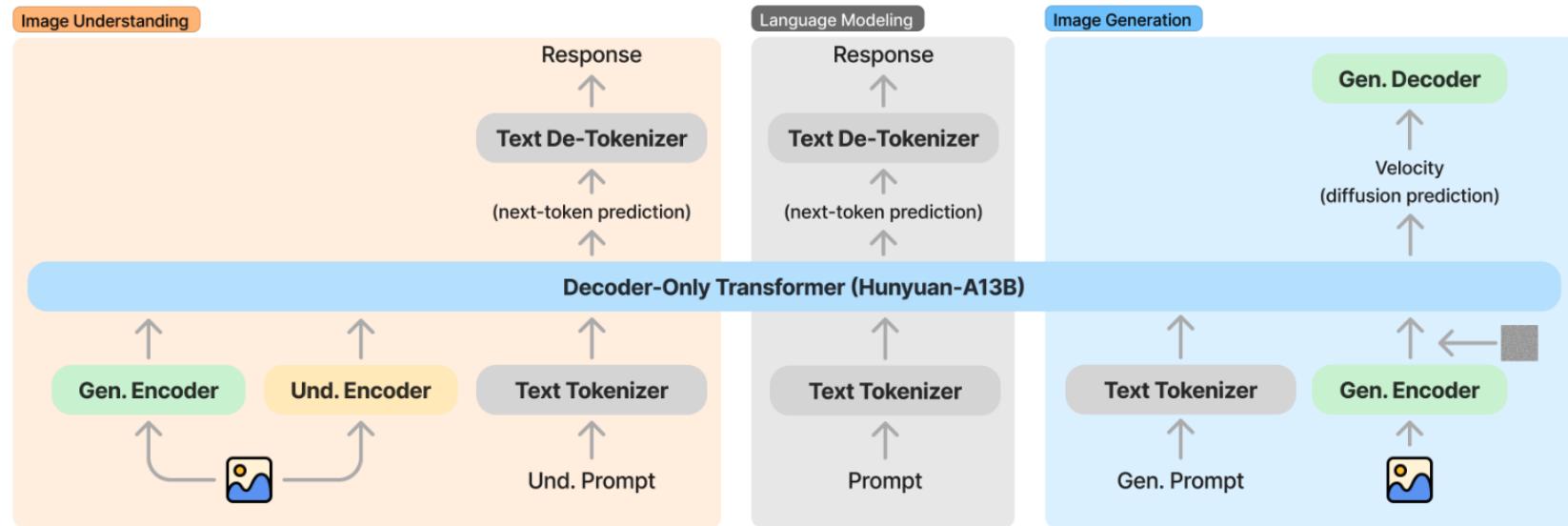


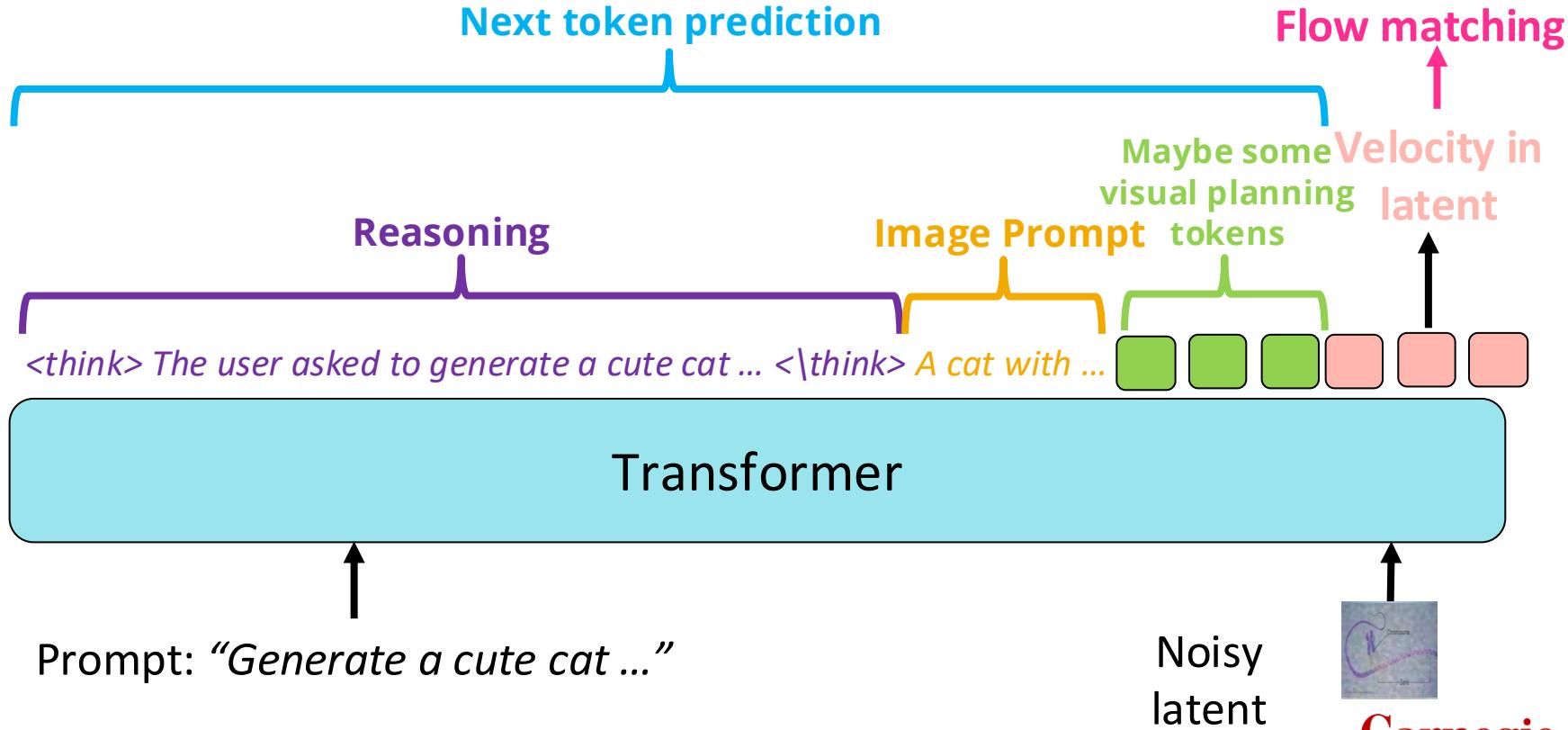
Figure 1: A high-level illustration of Transfusion. A single transformer perceives, processes, and produces data of every modality. Discrete (text) tokens are processed autoregressively and trained on the **next token prediction** objective. Continuous (image) vectors are processed together in parallel and trained on the **diffusion** objective. Marker BOI and EOI tokens separate the modalities.

Attempt 3.5: “Native multimodal model”



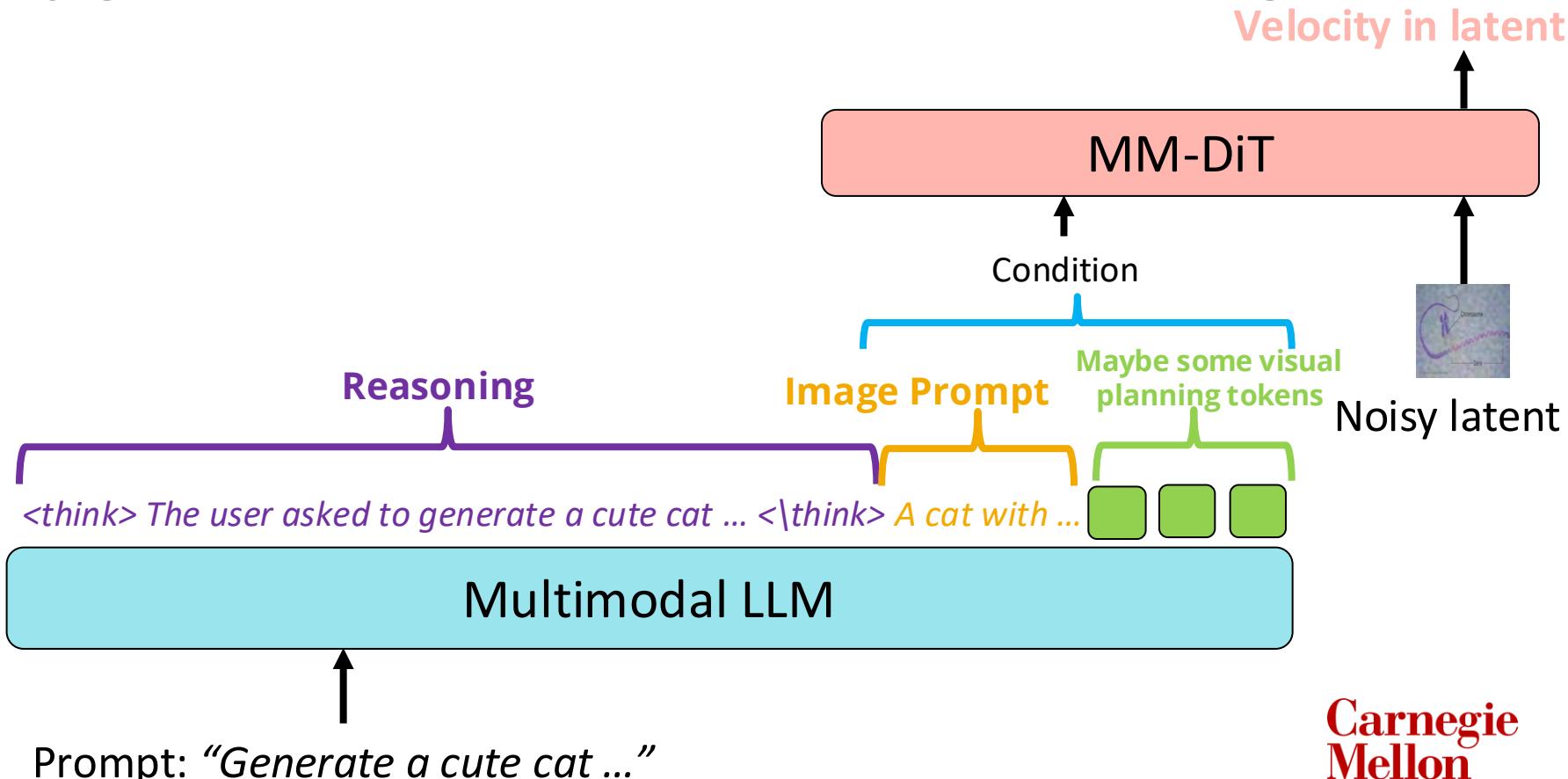
My guess on how Nano Banana & GPT-4o Image work

50



My guess on how Nano Banana & GPT-4o Image work

51



The design space of text-to-image generation

The design space of text-to-image generation

Training

- Training paradigm
 - DDPM
 - Flow matching

Model

- Latent Space
 - VQ-VAE/VQGAN
 - Advanced VAE
- Model architecture
 - U-Net
 - DiT

Text Encoding

- Text Encoder
 - CLIP
 - CLIP + T5
 - LLM/VLM/MLLM
- Text Conditioning
 - Cross Attention
 - MM-DiT
 - Native MM

The design space of text-to-image generation

The design space of text-to-image generation

Training

- Training paradigm
 - DDPM
 - Flow matching

Model

- Latent Space
 - VQ-VAE/VQGAN
 - Advanced VAE
- Model architecture
 - U-Net
 - DiT

Text Encoding

- Text Encoder
 - CLIP
 - CLIP + T5
 - LLM/VLM/MLLM
- Text Conditioning
 - Cross Attention
 - MM-DiT
 - Native MM

This is Stable Diffusion 1 & 2!

The design space of text-to-image generation

The design space of text-to-image generation

Training

- Training paradigm
 - DDPM
 - **Flow matching**

Model

- Latent Space
 - VQ-VAE/VQGAN
 - **Advanced VAE**
- Model architecture
 - U-Net
 - **DiT**

Text Encoding

- Text Encoder
 - CLIP
 - **CLIP + T5**
 - LLM/VLM/MLLM
- Text Conditioning
 - Cross Attention
 - **MM-DiT**
 - Native MM

This is Stable Diffusion 3 & Flux 1!

The design space of text-to-image generation

The design space of text-to-image generation

Training

- Training paradigm
 - DDPM
 - **Flow matching**

Model

- Latent Space
 - VQ-VAE/VQGAN
 - **Advanced VAE**
- Model architecture
 - U-Net
 - **DiT**

Text Encoding

- Text Encoder
 - CLIP
 - CLIP + T5
 - **LLM/VLM/MLLM**
- Text Conditioning
 - Cross Attention
 - **MM-DiT**
 - Native MM

This is Flux 2, Z-Image, Qwen-Image, etc!

The design space of text-to-image generation

The design space of text-to-image generation

Training

- Training paradigm
 - DDPM
 - **Flow matching**

Model

- Latent Space
 - VQ-VAE/VQGAN
 - **Advanced VAE**
- Model architecture
 - U-Net
 - **DiT**

Text Encoding

- Text Encoder
 - CLIP
 - CLIP + T5
 - **LLM/VLM/MLLM**
- Text Conditioning
 - Cross Attention
 - MM-DiT
 - **Native MM**

This is Transfusion, Hunyuan 3.0, etc!

The design space of text-to-image generation

The design space of text-to-image generation

Training

- Training paradigm
 - DDPM
 - **Flow matching**

Model

- Latent Space
 - VQ-VAE/VQGAN
 - **Advanced VAE**
- Model architecture
 - U-Net
 - **DiT**

Text Encoding

- Text Encoder
 - CLIP
 - CLIP + T5
 - **LLM/VLM/MLLM**
- Text Conditioning
 - Cross Attention
 - MM-DiT
 - **Native MM**

(Probably also Nano Banana & GPT-4o Image)

We are now in the realm of the state-of-the-arts

- **2/3 (Tue):** How to use diffusion/flow models for robotics, control & decision making (**Max Simchowitz**, MLD Prof.)
- **2/5 (Thur):** Text-to-image models and SOTA techniques
- **2/10 (Tue):** How to sample from diffusion/flow models with a single step
 - Distillation
 - Consistency models
 - Flow maps
- **2/12 (Thur):** Real-time generation techniques for video (**Linqi (Alex) Zhou**, Luma AI)