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Quiz time!

10 minutes
Closed-book

On Gradescope!!!

If you don't want to stay for the lecture, feel free to leave after

submitting your quiz!

Carnegie
Mellon
University



Housekeeping Announcements

« Homework 2 is out! https://kellyyutonghe.github.io/10799526/homework/

* Due date: 2/3 Tue, Late Due date: 2/5 Thur
* Training models takes time! Start early!
* Maybe change in due date? Vote in Discord!

* Next class we will have Max Simchowitz come for a guest lecture/panell Come
to class in person if you want to ask him questions about diffusion/flow for

robotics, control & decision making
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https://kellyyutonghe.github.io/10799S26/homework/

Last time we learned DDIM
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Solver comparison (from Claude)

Simple « > Optimized
Fast/step Fast/quality

Euler Midpoint Heun DPM-Solver

1 NFE/step 2 NFE/step 2 NFE/step 1-2 NFE/step

1st order 2nd order 2nd order 1st-3rd order
50-100 steps 25-50 steps 25-50 steps 10-25 steps

| |
| | |

Generic ODE Generic ODE Diffusion-specific
solvers solvers solver

Carnegie
Mellon
University



The design space of diffusion models

E—

« Prefixed noise schedule

Training

« Training noise sampling

schedule

« Loss weighting w.r.t. time

\ >

The design space of diffusion models

-

« Reparameterization

Model

« Input/Output scaling

e How to dotime

conditioning

-

~

/

/

 Solver

Sampling

« Sampling time noise

schedule

* Number of time steps

-

4
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Clarification on training noise distribution

Just sampling the time steps that are more effective during training time!

loss
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— Loss after init — CIFAR-10
- - Distribution of & FFHQ-64
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|

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364
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https://arxiv.org/pdf/2206.00364

Are diffusion models perfect now?
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How do normal people do conditional generation

Unconditional generation: Conditional generation:
But the
. unconditional
SASES model already has a
¢ lot of good
knowledge on how You’ll have to train
Unconditional to generate human Conditional a new model for

generative faces in general... generative each type of

model model condition and can’t
p@(x) Peo (xlc) reuse the
unconditional
model!
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Remember the No.1 rule in probability theory

We know that diffusion models model the score function
Vy, logpg (x¢, t)

By Bayes' Theorem, we know that Pre-trained
unconditional

p(x) diffusion model

p(X|C) — p(x,c) — p(CIX)p(x) o

p(c) p(c) /
Vi, logpg(xs, tlc) = + V., log pg (x¢, t)
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Classifier guidance diffusion
Forward SDE (data — noise)
Q dx = f(x,t)dt + g(t)dw )@

- | | scoe function

Revers (noise — data)

Conditional score:

Vi, logpg(xs, tlc) = Vi, logpg(c|xs, t) + Vi, logpe(xe, t) Carnegie
Mellon

Dhariwal & Nichol . “Diffusion Models Beat GANs on Image Synthesis”. NeurlPS 2021. https://arxiv.org/pdf/2105.05233 U
niversity

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG 12RRHS


https://openreview.net/pdf?id=PxTIG12RRHS
https://arxiv.org/pdf/2105.05233
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Classifier guidance diffusion v.s. normies

Unconditional diffusion: Conditional diffusion: Classifier guidance diffusion:

Unconditional Conditional Unconditional

diffusion model diffusion model diffusion model clessiiier
Vi, logpg(x, t) V., log pg(xs, t]c) V., log pg (x,, t) po(clxt, t)
H Carnegie
Mellon
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Classifier guidance diffusion/Conditional score SDE

Figure 4: Left: Class-conditional samples on 32 x 32 CIFAR-10. Top four rows are automobiles and
bottom four rows are horses. Right: Inpainting (top two rows) and colorization (bottom two rows)
results on 256 x 256 LSUN. First column is the original image, second column is the masked/gray-
scale image, remaining columns are sampled image completions or colorizations. C arnegie

Mellon

University
Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https.//openreview.net/ndf2id=PxTIG 12RRHS


https://openreview.net/pdf?id=PxTIG12RRHS
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Remember the No.1 rule in probability theory

We know that diffusion models model the score function
Vy, logpg (x¢, t)

By Bayes' Theorem, we know that Pre-trained
unconditional

p(x) diffusion model

p(x,c) _ p(CIX)p(x)
= = X
plxle) =7 p(©)

Vi 10gPo (X1, t]c) = wg Po (Xt t)/

The classifier needs
to be able to process Carnegie

noisy images! Mellon
University
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We need to train a noisy classifier for classifier
guidance diffusion!

Unconditional diffusion: Conditional diffusion: Classifier guidance diffusion:

Unconditional Conditional Unconditional —
diffusion model diffusion model diffusion model oisy ass; Il
Ve, log pg(x¢, t) V., log pg(xs, t]c) V., log pg (x,, t) pe(clxs, t)

The noisy classifier needx
be specifically trained to
pair with the unconditional

diffusion model
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Is it possible to use an off-the-shelf classifier?

Unconditional diffusion: Conditional diffusion: Classifier guidance diffusion:

Unconditional Conditional Unconditional Off-the-shelf
diffusion model diffusion model diffusion model Classifier
Vi, log pg (x¢, t) Vy, log pg (x¢, t|c) Vi, logpg(x¢, t) Py (c|xo)
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Remember how we do DDIM We do have some clean

image estimates from each
noisy time step!

Timet
predicted
t—1 clean
image
dicted
t—2 predicte predicted
noise .
. noise
Xo|t-1 Xo|t—2
et Carnegie
Mellon

University
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Using off-the-shelf classifiers for diffusion guidance

This is called
diffusion posterior
sampling

—

Time t

Off-the-shelf
Classifier —— Carnegie
Py (clxo) Mellon
University
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Diffusion posterior sampling (DPS)

Timet

bredicted \
t—1 Xt
t—2 predicted \

Xt—1

predicted eee

Carnegie
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University

clean
image

Chung et al. “Diffusion Posterior Sampling for General Noisy Inverse Problems”. ICLR 2023. https://arxiv.org/pdf/2209.14687


https://arxiv.org/pdf/2209.14687
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DPS is great, but

Time t

bredicted

t—1
—
£— 2 Vi, 108 Py (c|Xo|c)= ——
Vso . 108 Do (€| Zoje) Vi, Zoje (xe; 6)
- => We need to backprop through both
the classifier and the diffusion model!
Time O Off-the-shelf “a headshot of o~

._’—————-} Classifier ———— woman with Carnegle
- Py (clXo) dark hair” Mellon
University




21

Diffusion manifolds are layered bubble shells
Why?
N(awxo, b)) Because high dimensional
Moo / \/ / Gaussians are soap bubbles!

T/ Proof hint:

Try to see where is the majority
O of the density concentrated at in
4 | high dimensional Gaussians
v |
|
Carnegie
(a) Geometry of diffusion model g
Mellon
- University

Chung et al. “Improving Diffusion Models for Inverse Problems using Manifold Constraints”. NeurlPS 2022. https://arxiv.org/pdf/2206.00941


https://arxiv.org/pdf/2206.00941
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DPS is great, but DPS is very very slow!

The guidance is unconstrained!
=> The guided sample can go off the manifold!
=> Need very small guidance steps and/or a
lot of diffusion steps!

s

Time t

t—1
——
t—2 Vy, logpg (clXo))= ~——
Vsoy 10826 (¢|R01e) Ve, Roje (x5 6)
A} => We need to backprop through both

the classifier and the diffusion model!
Off-the-shelf “3 headshot of

Classifier ——— e oo with Carnegie
Pe(clxo) dark hair” Mellon
University
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Remedy 1: Take gradient w.r.t. the clean image instead

Time t

t—1
—
A predicted We don’t need to backprop through the
noise diffusion model anymore (which is

usually a lot more expensive than
backproping through the classifier)
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Remedy 2: Project the guided samples to the manifold

Time t

X;—1|C Tangem
#

the noisy manifold

xt_1|C \

\
predicted But we don’t have access ~—

notse to those manifolds

Carnegie
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Getting access to data manifolds via the decoder of
an autoencoder

\ Reconstruction
Low dimensional The Jacobian of the decoder

representation of gives us access to the tangent

________ e the data space of the data manifold Carnegie
Mellon

University

N

Shao et al. “The Riemannian Geometry of Deep Generative Models”. CVPR 2018 workshop. https://arxiv.org/pdf/2311.16424zd


https://arxiv.org/pdf/2311.16424
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Remedy 2: Project the guided samples to the manifold

X;—1|C Tangem
-_#‘

Timet the noisy manifold
O ——
. Xe-1]C But we don’t have access to those
manifolds
t_2 predicted — We can use autoencoders to get
nose access

— But then we will need an

autoencoder for each noise level!

Carnegie
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Remedy 2.5: Project the clean data estimation to the
clean data manifold

This is called
manifold preserving

guided diffusion
predicted \

noise Tangent space of
Ak
x0|t|C —= the clean manifold

. Carnegie
% Mellon

University

*
Timet Xe—1|C

He et al. “Manifold Preserving Guided Diffusion”. ICLR 2024. https://arxiv.org/pdf/2311.16424


https://arxiv.org/pdf/2311.16424
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Manifold preserving guided diffusion (MPGD) is
much faster (and better) than DPS

=11 - - 14 A1

— 104 ™ h —m— MPGD w/o Proj.
" —m— MPGD w/o Proj. —m— MPGD w/o Proj. —m— MPGD-AE
o —=— MPGD-AE —m— MPGD-AE 121 _a. wpoDz
—u— MPGD-Z 0.8 —m- MPGD-Z —u— DPS
—m— DPS : —s— DPS 1079 _a LeDMC
=31 —m— LGD-MC —m— LGD-MC g’ -m- MCG -
g —m— MCG 2 oe —=— MCG S 8 7 g
9 _4 = a o
S » - H .g 6 '/. /‘//
. \ - "
= 0.4 _— .
T~ | 4
k ""‘\__‘ " - . /
—6 ‘E\ 0.2 4 - 2 .//'
n = 2 = [~
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

DDIM Steps DDIM Steps DDIM Steps

Figure 5: Quantitative results of FFHQ super-resolution experiment that compares fidelity (log
KID), guidance quality (LPIPS) and inference time across different numbers of DDIM steps.
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He et al. “Manifold Preserving Guided Diffusion”. ICLR 2024. https://arxiv.org/pdf/2311.16424



https://arxiv.org/pdf/2311.16424
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MPGD is training-free and applicable to all
differentiable guidance/classifier/reward

........ [ Noisy Linear Inverse Problems ] [ FacelD Guidance Generation }

Ground Truth MPGD (~1s/img) Input Reference MPGD w/o Proj.

CLIP Guidance Generation [Style Guidance + Stable Diffusion ] [ FacelD Guidance + Stable Diffusion ]
Unconditional MPGD MPGD Y

Input Reference

MPGD (~1 Os/nmg) Input Reference
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Prompt: “a headshot of a person wearing red lipstick” 5

He et al. “Manifold Preserving Guided Diffusion”. ICLR 2024. https://arxiv.org/pdf/2311.16424


https://arxiv.org/pdf/2311.16424
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Any other training-free ways to inject conditions
into diffusion models?

‘ ::":\u‘-‘“ «;_.,?;,

<« — Carnegie
Mellon
University



31

Remember how we do DDIM

Time t

predicted

t—1

t—2

fmed Carnegie
Mellon

University




If we already know what we want to generate

But we don’t have what we
want to generate yet!

Time t

predicted
clean

bredicted

Carnegie
Mellon
University
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But do we really need to know EXACTLY what we

need to generate?
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We only need a rough draft/preliminary version of
what we want to generate!

But we also don’t have a draft!
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We only need a rough draft/preliminary version of
what we want to generate!

Or do we?
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How about just draw one lol

36
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With this rough painting, we can do

Notice that we don’t need to
do any steps before t now,
we can directly start from =g

time step t
Timet =— Xt—1

This is called SDEdit
~

predicted Xy \

clean

: Carnegie
Carnes

University

Meng et al. “SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations”. ICLR 2022. :



https://arxiv.org/pdf/2108.01073.pdf
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SDEdit hijacks the diffusion process with user inputs

Perturb with SDE Reverse SDE
/\

Rke .

Imag%

Input Output

Carnegie
Mellon
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Meng et al. “SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations”. ICLR 2022.https://arxiv.org/pdf/2108.01073.pdf


https://arxiv.org/pdf/2108.01073.pdf
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SDEdit can turn your preliminary paintings/edits
into realistic looking images

Stroke Painting to Image

Stroke-based Editing

Input (guide)

Image Compositin, ’

Source Input (gulde) Output Source

Source Output

Carnegie

Mellon
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Input (guide)  Output Input (guide)

Meng et al. “SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations”. ICLR 2022.https://arxiv.org/pdf/2108.01073.pdf


https://arxiv.org/pdf/2108.01073.pdf
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SDEdit can turn your preliminary paintings/edits
into realistic looking images

Original Image User Input SDEdit Output

Carnegie
Mellon
University
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The controllability-fidelity tradeoff

More faithful More realistic
Less realistic Less faithful
Faithtal SDEdit —r

e . \ Realistic

[ [ ) I g

tp=05 ty=06 t;=07

Carnegie
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Meng et al. “SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations”. ICLR 2022.https://arxiv.org/pdf/2108.01073.pdf


https://arxiv.org/pdf/2108.01073.pdf
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Guidance pro tips 1: You should guide more during
the middle time steps (wisdom from EDM still holds)

Phase#1: Chaotic Stage Phase#2: Semantic Stage Phase#3: Refinement Stage
(#1000~#800 Timestep) —_— (#800~#500 Timestep) —_— (#500~#1 Timestep)
Almost Out of Control Critcal for Conditional Generation Too Late for Full Control
Carnegie
Mellon
- University

Yu et al. “FreeDoM: Training-Free Energy-Guided Conditional Diffusion Model". ICCV 2023. https://arxiv.org/pdf/2303.09833


https://arxiv.org/pdf/2303.09833

Guidance pro tips 2: You can even time travel back to :
the previous time step if you want to refine the
guidance you get!

Time t

predicted
clean \
image $

predicted
noise

Carnegie
Mellon
University
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Guidance pro tips 2: You can even time travel back
to the previous time step if you want to refine the
guidance you get!

Carnegie
Mellon
University

Lugmayr et al. “RePaint: Inpainting using Denoising Diffusion Probabilistic Models”. CVPR 2022. https://arxiv.org/pdf/2201.09865



https://arxiv.org/pdf/2201.09865

What if we are normies

Unconditional diffusion:

Unconditional
diffusion model

Vi, logpg(x, t)

Conditional diffusion:

Conditional
diffusion model

Vi, logpe(xs, tlc)

45

If we have already trained
an unconditional diffusion
model and a separate
conditional diffusion
model, can we somehow
use both to make our
conditional generation

better?

Carnegie
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Unconditional distribution v.s. Conditional distribution

Unconditional and Conditional Densities

—— plX) =3N0G . 02) + 2N g, 02)

0.30 - plx | c) = N(x: g, 02)
0.25 4

0.20

density

0.10

0.05 1

0.00q =———
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Conditional mixed with unconditional distributions

density

Weighted Family: py(x) « p(x)1~¥p(x | c)"

Pu(X) = px)1~%p(x | Y, w=0.0

0.35 1 Pulx) = plx)~Wpix | % w=1.0

0.30 4 PulX)epl)l~—¥plx | 0%, w=2.0

PulX)epl)l~—%plx | 0%, w=4.0
0.25
0.20 A
0.15 A
0.10 A
0.05 A
0.00 A

—IB —IE‘.':- —I4- —I2 0 2 ¢Il 6 II3
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Classifier-free guidance: Sample from the weighted
mixture of unconditional + conditional score

Vi logp,(z | y) = (1 —v)Vzlogp(z) + vV, logp(z | ).

Algorithm 1 Joint training a diffusion model with classifier-free guidance

Require: p,ncond: probability of unconditional training

1: repeat

2: (x,¢) ~ p(x,c) > Sample data with conditioning from the dataset

3 c < @ with probability pyycona > Randomly discard conditioning to train unconditionally

4 A~ p(A) > Sample log SNR value

5: e ~N(0,I)

6: Z) = Q) X + O)€ > Corrupt data to the sampled log SNR value

7 Take gradient step on Vy ||€g(z), c) — es||2 > Optimization of denoising model

8: until converged
Carnegie
Mellon

- University

Ho & Salimans. “Classifier-Free Diffusion Guidance”. NeurlPS 2021 Workshop. https://arxiv.org/pdf/2207.12598


https://arxiv.org/pdf/2207.12598
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Do we even need to train two separate models?

Unconditional diffusion: Conditional diffusion:

Unconditional Conditional
diffusion model diffusion model
Vi, log pg (x¢, t) Vi, log pg (x¢, tlc)

Carnegie
Mellon
University
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Do we even need to train two separate models?

conditional diffusion: Conditional diffusion: Pseudo unconditional diffusion:

Conditional Same model Conditional
diffusion model (share dlffu5|on model

Vi log pe(x¢, tlc)| parameters) | Vi, 108 Po(x¢, t|®)

™y

Carnegie
Mellon
University
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Classifier-free guidance: Sample from the weighted
mixture of unconditional + conditional score

Valogpy(z | y) = (1 —7)Vzlogp(z) + vV logp(z | y).

Two sets of samples from OpenAl's GLIDE model, for the prompt ‘A stained glass window of a panda eating
bamboo.', taken from their paper. Guidance scale 1 (no guidance) on the left, guidance scale 3 on the right. Carnegie

Mellon
University
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Images from Sander Dieleman https://sander.ai/2022/05/26/guidance.html



https://sander.ai/2022/05/26/guidance.html
https://sander.ai/2022/05/26/guidance.html
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Now you know how to turn an unconditional
diffusion into a conditional one!

Training-based methods:
Classifier guidance diffusion
Classifier free guidance (if you don't already have a conditional model)

Training-free methods:

DPS
MPGD
« SDEdit
3 | | N Carnegie
Classifier free guidance (if you already have a conditional model) Mellon

University
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In the next two weeks, we are going into the realm
of the state-of-the-arts

« 2/3(Tue): How to use diffusion/flow models for robotics, control & decision

making (Max Simchowitz, MLD Prof.)
« 2/5 (Thur): Text-to-image models and SOTA techniques

« 2/10(Tue): How to sample from diffusion/flow models with a single step

* Distillation
* Consistency models
* Flow maps
« 2/12 (Thur): Real-time generation techniques for video (Lingi (Alex) Zhou, Luma
Carnegie

Al Mellon
University
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In the next two weeks, we are going into the realm
of the state-of-the-arts

« 2/3(Tue): How to use diffusion/flow models for robotics, control & decision

making (Max Simchowitz, MLD Prof.) (Will be chill, please come in person!)
« 2/5 (Thur): Text-to-image models and SOTA techniques

« 2/10(Tue): How to sample from diffusion/flow models with a single step

* Distillation
* Consistency models
* Flow maps
« 2/12 (Thur): Real-time generation techniques for video (Lingi (Alex) Zhou, Luma
Carnegie

Al Mellon
University
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