Carnegie Mellon University

TITITITITITITS

Lecture 6: The Design
Space of Diffusion Models
& Solvers for Fast Sampling

Yutong (Kelly) He
10-799 Diffusion & Flow Matching, Jan 27, 2026

£ Modal =

Housekeeping Announcements

« Homework 2 is out! https://kellyyutonghe.github.io/10799526/homework/
* Due date: 2/3 Tue, Late Due date: 2/5 Thur
* Training models takes time! Start early!
* Maybe change in due date? Vote in Discord!

* Quiz 3 next class!

Carnegie
Mellon
University

https://kellyyutonghe.github.io/10799S26/homework/

Now that we have learned the basics

Is DDPM perfect now? What can we improve?

Carnegie
Mellon
University

Us defending our DDPM model from HW1 be like...

WORLD
ECONOMIC
FORUM

Carnegie
Mellon
A ET . A A ANMAAAALALAAAMA MARRRRERRY R ET AR R R Univel' Sity

Video from World Economic Forum Annual Meeting Davos 2026

Vanilla DDPM is slooooooooow

« Take 1000 steps to generate an image

« Theimage quality severely degrades if you use fewer steps

« Scaling to higher resolution/larger model size becomes nightmare
=>

« Any application that needs real time generation &

« Video is going to be a big pain 0

+ GPUcost Q2 .
arnegie

Mellon
University

Currently, the DDPM sampling is like

Timet : Xt—1 &
/nmse’.V

Carnegie
Mellon
University

d\lo, you canitfThere mustb

be anotherway.

But there is another way!

We know x, = /@;xy + /1 — @€, and our model

predicts eg(xs, t) = €, then

Xojt ® = (%t =/ 1 = areq(xy, t))

And

Xe—1 = /A1 Xo)t + /1 — Ar_169(x¢,)

Carnegie
Mellon
University

Image from Harry Potter

So we can also do sampling like this

Time t

predicted

bredicted

t—1

t—2

fmed Carnegie
Mellon

University

L] [] 1
Now what if we skip t-1 Roje ~ N — 1= aep(x,, 1))
t

And

Xe_p R Qe Xoe ¥4/ 1 — Ar_2€9(X¢, T)

predicted
noise

Carnegie
Mellon
University

10

We can skip more than 1 step! 10X
speedup!

Time 0 .
Carnegie

Mellon
University

11

Notice how right now everything is deterministic

Time 0 :
e Carnegie

Mellon
University

12

But we can add the stochasticity back!

We know x, = /@;xy + /1 — @€, and our model

predicts eg(xs, t) = €, then

1
Xoie ® —(x¢ —/ 1 — areg (x4, t))
0% ey

And

predicted
noise

Xt—1 = C_{t—1£0|t + \/1 — (Yt_l - O-tZEQ(xt, t) + (VA
for constant ¢, and z~N (0, 1)
Carnegie

Mellon
University

13

Putting everything together ~ NOw you have

DDIM!

Timet

t —10
T~
71:_{) predicted \

noise . seesee
et Carnegie
Mellon

University

DDIM: The OG diffusion fast sampling algorithm

(t)
T — V1 — o€y’ (T
mtlz,/atl(¢ \/a_{i [(t)) +\/1—Oﬂt71—0't2-6§t)(mt)+ o€
t ~ —~

~ vy

-

random noise

-~
-~ “direction pointing to @;”
“ predicted o™

The pseudocode of the deterministic version of DDIM (also in HW2)

Algorithm 1 DDIM Sampling

Require: trained noise predictor €y, number of steps S, noise schedules &
1: Sample z7 ~ N(0, 1)
2: Create timestep subsequence [7s,7s-1,...,71] from [T),...,1] > e.g., [1000, 900, 800, ...]
3 fori=5,5-1,..,1do

4: t< T;

5: bprev ¢ Ti—1 (OI' 0ifi= 1)

6: € + ep(x4, t) > Predict noise using your trained DDPM
7: To ‘"77‘/\/? > Predict clean image
8: Ttprey = \/QUtprey " To + /T — Qe - € > DDIM step
9: end for

10: return z

|

Jiaming Song, Chenlin Meng, Stefano Ermon. “Denoising Diffusion Implicit Models”. ICLR 2021. https://arxiv.org/pdf/2010.02502

14

Carnegie
Mellon
University

https://arxiv.org/pdf/2010.02502

Any other ways to sample?

15

Carnegie
Mellon
University

16

Remember how everything can be ODE now

Cond-OT flow matching: Probability flow ODE:

Po =N(0,1),p; = 8(x1) dx = [£(x,1) - %g(t)2vx log ()] dt,

Xy = txg + (1 — t)xo, Xo~Po

Pe(xe|x1) = N(txy, (1 =)?1)

dx, We can use different

— = U\ X[X)) — X1 — X
7 = wlxelx) = x - %

solvers to solve the ODEs!

Carnegie
Mellon
University

Classic ODE solver 1 - Euler solver

17

o \ xl
V?(Xt;\)A .
Time 0 ¢ t 4+ At Time 1
Carnegie
Mellon

University

Classic ODE solver 2 - Midpoint solver

18

X0 X1
(42 At)
Vg X, 1, ., —
o~ °
Vo (Erxt: t) T :
Time O ¢ t+lAt t 4+ At Time 1
2
Carnegie
Mellon

University

Classic ODE solver 3 - 2nd order Heun solver

19

o \ X1
o
!9(tt) : ,
Vg (X¢tat, t + At)
Time O ¢ t 4+ At Time 1
Carnegie
Mellon

University

20

Diffusion specific solver - DPM solver

The diffusion ODE is

do't2 dlog o dlog o dlog o d)
) =dlogaan o= sy (demndemn)
I
Y,
t 2
_ JEf(r)dr It fryar9-(7)
e :c3—|—/3 (6 20, €o(er,7)) dr- Carnegie
Mellon
L University

Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurlPS 2022. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927

21

Diffusion specific solver - DPM solver

A,
at@ _ * —\ A A
From here Ty = Ty — O‘t@/ e ég(2x, N)dA.
ti 1 D
We can channel Taylor expansion
k—1
~ A (A o Atz—)n A A k
eo(@x,N) =Y el (@, M) + O = A, ,)R),
0 n.
Il
\%
k—1 At
o, . (1), ~ B (A=A)"
Lt 1—t; = . L, — O, Z Eé)(m)‘tiliAtil) € A(?’; 1) d’\+0(hf+1):
ti—1 n=0 Aty)
\ Y ' Carnegie
Mellon

Can be calculated analytically

- University
Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurlPS 2022. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927

22

Diffusion specific solver - DPM solver

Qt; - <« 2(n) ¢ 4 A A=A)" k+1
Lt 1—t; = Li; 1 — O, Z €o (m)‘ti_l y At 1) € | dA+O(h; ™),
Atia n=0 At;_q n:
\ J
— I
Can be estimated lgnored
Can be calculated analytically
Finally we get for k=1
~ o, .
Ty, = Ty, , —op (e — 1)eg(@e, 1, ti-1)
ti_1
Carnegie
Mellon
- University

Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurlPS 2022. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927

23

Solver comparison

100.0
—*— DPM-Solver —*— ODE (DPM-Solver)

—+— DDPM —— ODE (RK45)
—— DDIM —s«— SDE (Euler)
—»— SDE (Adaptive)

100

50

NFE NFE
(e) ImageNet 128x128 (discrete) (a) CIFAR-10 (continuous)
Carnegie
Mellon
- University

Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurlPS 2022. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927

24

Solver comparison (from Claude)

Simple « > Optimized
Fast/step Fast/quality

Euler Midpoint Heun DPM-Solver

1 NFE/step 2 NFE/step 2 NFE/step 1-2 NFE/step

1st order 2nd order 2nd order 1st-3rd order
50-100 steps 25-50 steps 25-50 steps 10-25 steps

| |
| | |

Generic ODE Generic ODE Diffusion-specific
solvers solvers solver

Carnegie
Mellon
University

25

Besides sampling, any other ways to improve DDPM?

Carnegie
Mellon
University

26

Actually there is a paper that studied them all

EDM: What are the actual independent design choices of diffusion models and let’s

disentangle them as study them one by one

Elucidating the Design Space of Diffusion-Based
Generative Models

Tero Karras Miika Aittala Timo Aila Samuli Laine
NVIDIA NVIDIA NVIDIA NVIDIA

Carnegie
Mellon
University

The design space of diffusion models

27

E—

« Prefixed noise schedule

Training

« Training noise sampling

.~

The design space of diffusion models

-

« Reparameterization

Model

« Input/Output scaling

~

N

/ Sampling
. Solver

« Sampling time noise

schedule .« How to do time schedule
« Loss weighting w.r.t. time conditioning * Number of time steps
Carnegie
Mellon

University

SNR = Signal/Noise 28
Signal-to-noise ratio (SNR) a?

Noise x
t=T

casy eaSy\‘ /
. , All noise,
No noise, / Some noise,

no signal

2l signal Some Signal\ Hard!!! Carnegie
ara::.

Mellon
University

Cat stolen from Chieh-Hsin (Jesse) Lai

29

SNR Attempt 1: Linear scheduler -> Cosine scheduler

Linear vs Cosine Noise Schedule (T=1000)

Noise Rate B; Cumulative Signal a; Signal-to-Noise Ratio
1091 — Linear 1.0 40 —— Linear
—— Cosine 20 —— Cosine
0.8 0.8 A
0
0.6 0.6 8 _y
L & 2
0.4 0.4 2 -40
-60
0.2 1 0.29
-80
00 L T T T T T T OD 1 T T T T T T _100 T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 o] 200 400 600 800 1000
Timestep t Timestep t Timestep t

Forward Noising: Linear vs Cosine Schedule
t=250

Carnegie
Mellon

Cosine

Nichol & Dhariwal. “lmproved Denoising Diffusion Probabilistic Models”. ICML 2021. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927

30

SNR Attempt 1.5: You can even learn your schedule

SNR(t) schedule Var(BPD)

N E::;:i)_linear Learned (ours) 0.53

—— beta-linear [1] log SNR-linear 6.35

s —— alpha-cosine [2] ﬁ-Linear [1] 31.6
0.0 02 04 06 08 10 a-Cosine [2] 31.1
(a) log SNR vs time ¢ (b) Variance of VLB estimate

Carnegie
Mellon
University

Kingma et al. “Variational Diffusion Models”. NeurIPS 2021. https://arxiv.org/pdf/2107.00630

https://arxiv.org/pdf/2107.00630

|

SNR Attempt 2: At sampling time, you can also spend
more time on the more difficult noise levels!

: 1 1
+ Jy'.gg_l(‘:"xllinp _O'maxp))p and oy =0.

o=

Oi<N = (Umax

SNR Attempt 3: You should parameterize your model
to take the actual noise level (o or logo) instead of
timesteps!

Scheduler invariant parameterization

Continuous => Easier to do make inference time changes (fewer/more steps)

Better numerical scaling

Mellon

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364

Carnegie

31

University

https://arxiv.org/pdf/2206.00364

32

SNR Attempt 4: Train on harder time steps more

Just sampling the more difficult time steps to more frequently during training time!

loss
1.4

1.2
1.0
0.8
0.6
0.4
0.2
0.0

— Loss after init — CIFAR-10
- - Distribution of & FFHQ-64

0=0.005 0.02 01 051 2 5 1020 50

|

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364

Carnegie
Mellon
University

https://arxiv.org/pdf/2206.00364

33

SNR Attempt 5: Weight different timestep differently
according to their SNR

The gradient

loss .

L 4| | — Loss after init ~ — CIFAR-10 scale varies a lot

' - - Distribution of ¢ — FFHQ-64 — _

1.2 depending on
1.0

the SNR
0.8
0.6]
0.4 v
0.2 Apply a weighting scalar
0.0 .
to balance it out!

0=0.005 0.02 01 051 2 5 1020 50

Carnegie
Mellon
University

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364

https://arxiv.org/pdf/2206.00364

SNR Attempt 6: Reparameterization

Data x, X0.25T Xo 5T Xo 75T Noise xp

34

t=0 t = 0.25T t =05T t =0.75T t=T
Predict clean signal (x¢ g (x;, t)): Predict noise (ey(x;, t)):
« Easy atlow noise (high SNR) « Easy at high noise (low SNR)
» Hard at high noise (low SNR) « Hard at low noise (high SNR)
Something in between? Carnegie
Mellon

University

35

SNR Attempt 6: Reparameterization

Data x, X0.25T Xo 5T Xo 75T Noise xp
t=20 t = 0.25T t =0.5T t =0.75T t=T

Predict clean signal (xq¢(x,, t)): Predict interpolation Predict noise (ey(x;, t)):

(a.k.a velocity vg(x;, t)):

« Easy atlow noise (high SNR) Easy at high noise (low SNR)

- Hard at high noise (low SNR) ~ ° Good balance! « Hard at low noise (high SNR)
CU T e T o Carnegie
Mellon
University

Salimans & Ho. “Progressive Distillation for Fast Sampling of Diffusion Models”. ICLR 2022. https://arxiv.org/pdf/2202.00512

https://arxiv.org/pdf/2202.00512

36

Another way to do network parameterization?

Remember how previously we want to do v-prediction as our target

V= 0€ — 0tX) o A mixture of noise

Now notice how x; is also a mixture of noise and clean data and clean data
= The network should reuse some information in x;

— Skip connection!

Carnegie
Mellon
University

37

Input/Output scaling & Precondit‘iw, Rescale input

DG(m;J) — Cskip(o-) x + Cout(o-) F9 'n(U) I, Cnoise(o')as/

AN T~

Predicts clean data xO Skip connection weight Network output weight Trained network

Time/noise

conditioning

« Whent - 0,0 — 0=>inputis mostly clean => can directly pass through more

« Whent - 1, 0 » oo =>inputis mostly noise => should ignore most of the input

and rely on the network prediction more

Carnegie
Mellon
University

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364

https://arxiv.org/pdf/2206.00364

38

Input/Output scaling & Precondit‘iw, Rescale input

Dy(x;0) = cskip(0) T + cour(0) Folcin(o) ; Cnoise(UB,/ Time/noise

\ \ conditioning

Predicts clean data xO Skip connection weight Network output weight Trained network

We also want:

« The network input to have unit variance
« Training target to have unit variance

« Reuse information in input as much as possible

2

g o0
=> CSkip(U) = azf;tza ' Cout(o_) = —daa Cm(O') = Cnmse(U) = —loga
data Jo*+0%ata ,/0 +08ata Carnegle
Mellon
- University

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364

https://arxiv.org/pdf/2206.00364

39

The design space of diffusion models

/ The design space of diffusion models \
/ Training \ / Model \ / Sampling \

« Prefixed noise schedule - Reparameterization « Solver
« Training noise sampling * Input/Output scaling « Sampling time noise

schedule S Mamnits do (e schedule
« Loss weighting w.r.t. tinlconditioning « Number of time steps
Carnegie
Mellon

University

40

Next class we will learn how to turn an
unconditional diffusion model into a conditional one

Spoiler alert: You may or may not need to train for it!

SPOILERS ARE COMING

makeameme .org Carnegie
Mellon
University

N
Image from http://makeameme.org/meme/spoilers-are-coming

http://makeameme.org/meme/spoilers-are-coming
http://makeameme.org/meme/spoilers-are-coming
http://makeameme.org/meme/spoilers-are-coming
http://makeameme.org/meme/spoilers-are-coming
http://makeameme.org/meme/spoilers-are-coming

	Slide 1
	Slide 2: Housekeeping Announcements
	Slide 3: Now that we have learned the basics
	Slide 4: Us defending our DDPM model from HW1 be like…
	Slide 5: Vanilla DDPM is slooooooooow
	Slide 6: Currently, the DDPM sampling is like
	Slide 7: But there is another way!
	Slide 8: So we can also do sampling like this
	Slide 9: Now what if we skip t-1
	Slide 10: We can skip more than 1 step!
	Slide 11: Notice how right now everything is deterministic
	Slide 12: But we can add the stochasticity back!
	Slide 13: Putting everything together
	Slide 14: DDIM: The OG diffusion fast sampling algorithm
	Slide 15: Any other ways to sample?
	Slide 16: Remember how everything can be ODE now
	Slide 17: Classic ODE solver 1 – Euler solver
	Slide 18: Classic ODE solver 2 – Midpoint solver
	Slide 19: Classic ODE solver 3 – 2nd order Heun solver
	Slide 20: Diffusion specific solver – DPM solver
	Slide 21: Diffusion specific solver – DPM solver
	Slide 22: Diffusion specific solver – DPM solver
	Slide 23: Solver comparison
	Slide 24: Solver comparison (from Claude)
	Slide 25: Besides sampling, any other ways to improve DDPM?
	Slide 26: Actually there is a paper that studied them all
	Slide 27: The design space of diffusion models
	Slide 28: Signal-to-noise ratio (SNR)
	Slide 29: SNR Attempt 1: Linear scheduler -> Cosine scheduler
	Slide 30: SNR Attempt 1.5: You can even learn your schedule
	Slide 31: SNR Attempt 2: At sampling time, you can also spend more time on the more difficult noise levels!
	Slide 32: SNR Attempt 4: Train on harder time steps more
	Slide 33: SNR Attempt 5: Weight different timestep differently according to their SNR
	Slide 34: SNR Attempt 6: Reparameterization
	Slide 35: SNR Attempt 6: Reparameterization
	Slide 36: Another way to do network parameterization?
	Slide 37: Input/Output scaling & Preconditioning
	Slide 38: Input/Output scaling & Preconditioning
	Slide 39: The design space of diffusion models
	Slide 40: Next class we will learn how to turn an unconditional diffusion model into a conditional one

