
Lecture 6: The Design 
Space of Diffusion Models 
& Solvers for Fast Sampling
Yutong (Kelly) He

10-799 Diffusion & Flow Matching, Jan 27th, 2026 



2
2
2

2

Housekeeping Announcements

• Homework 2 is out! https://kellyyutonghe.github.io/10799S26/homework/

• Due date: 2/3 Tue, Late Due date: 2/5 Thur

• Training models takes time! Start early!

• Maybe change in due date? Vote in Discord!

• Quiz 3 next class!

https://kellyyutonghe.github.io/10799S26/homework/
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Now that we have learned the basics

Is DDPM perfect now? What can we improve? 
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Us defending our DDPM model from HW1 be like…

Video from World Economic Forum Annual Meeting Davos 2026
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Vanilla DDPM is slooooooooow

• Take 1000 steps to generate an image

• The image quality severely degrades if you use fewer steps

• Scaling to higher resolution/larger model size becomes nightmare

=> 

• Any application that needs real time generation 

• Video is going to be a big pain 🥲

• GPU cost 
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Currently, the DDPM sampling is like

Time 𝑡

𝑡 − 1

𝑡 − 2

Time 0

𝑥𝑡

𝑥𝑡−1

𝑥𝑡−2

𝑥0

score noise

score

noise

......
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But there is another way!

Time 𝑡

𝑡 − 1

𝑡 − 2

Time 0

𝑥𝑡

𝑥𝑡−1

predicted 

clean 
image

predicted 

noise

ො𝑥0|𝑡

We know 𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, and our model 

predicts 𝜖𝜃 𝑥𝑡 , 𝑡 ≈ 𝜖, then

ො𝑥0|𝑡 ≈
1

ത𝛼𝑡

(𝑥𝑡 − 1 − ത𝛼𝑡𝜖𝜃(𝑥𝑡 , 𝑡))

And

𝑥𝑡−1 ≈ ത𝛼𝑡−1 ො𝑥0|𝑡 + 1 − ത𝛼𝑡−1𝜖𝜃(𝑥𝑡 , 𝑡)

Image from Harry Potter
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So we can also do sampling like this

Time 𝑡

𝑡 − 1

𝑡 − 2

Time 0

𝑥𝑡

𝑥𝑡−1

𝑥𝑡−2

𝑥0

......
ො𝑥0|𝑡

ො𝑥0|𝑡−1 ො𝑥0|𝑡−2

predicted 

clean 
image

predicted 

noise

predicted 

clean 
image

predicted 

noise
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Now what if we skip t-1

Time 𝑡

𝑡 − 1

𝑡 − 2

Time 0

𝑥𝑡

𝑥𝑡−2

ො𝑥0|𝑡

predicted 

clean 
image

predicted 

noise

ො𝑥0|𝑡 ≈
1

ത𝛼𝑡

(𝑥𝑡 − 1 − ത𝛼𝑡𝜖𝜃(𝑥𝑡 , 𝑡))

And

𝑥𝑡−2 ≈ ത𝛼𝑡−2 ො𝑥0|𝑡 + 1 − ത𝛼𝑡−2𝜖𝜃(𝑥𝑡 , 𝑡)
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We can skip more than 1 step!

Time 𝑡

𝑡 − 1

𝑡 − 2

Time 0

𝑥𝑡

𝑥𝑡−10

𝑥𝑡−20

𝑥0

......
ො𝑥0|𝑡

ො𝑥0|𝑡−10 ො𝑥0|𝑡−20

predicted 

clean 
image

predicted 

noise

predicted 

clean 
image

predicted 

noise

𝑡 − 10

𝑡 − 20

10X 
speedup!
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Notice how right now everything is deterministic

Time 𝑡

𝑡 − 1

𝑡 − 2

Time 0

𝑥𝑡

𝑥𝑡−10

𝑥𝑡−20

𝑥0

......
ො𝑥0|𝑡

ො𝑥0|𝑡−10 ො𝑥0|𝑡−20

predicted 

clean 
image

predicted 

noise

predicted 

clean 
image

predicted 

noise

𝑡 − 10

𝑡 − 20
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But we can add the stochasticity back!

Time 𝑡

𝑡 − 1

𝑡 − 2

Time 0

𝑥𝑡

𝑥𝑡−10

ො𝑥0|𝑡

predicted 

clean 
image

predicted 

noise

𝑡 − 10

𝑡 − 20

We know 𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, and our model 

predicts 𝜖𝜃 𝑥𝑡 , 𝑡 ≈ 𝜖, then

ො𝑥0|𝑡 ≈
1

ത𝛼𝑡

(𝑥𝑡 − 1 − ത𝛼𝑡𝜖𝜃(𝑥𝑡 , 𝑡))

And

𝑥𝑡−1 ≈ ത𝛼𝑡−1 ො𝑥0|𝑡 + 1 − ത𝛼𝑡−1 − 𝜎𝑡
2𝜖𝜃 𝑥𝑡 , 𝑡 + 𝜎𝑡𝑧

for constant 𝜎𝑡 and 𝑧~𝑁(0, 𝐼)

noise
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Putting everything together

Time 𝑡

𝑡 − 1

𝑡 − 2

Time 0

𝑥𝑡

𝑥𝑡−10

𝑥𝑡−20

𝑥0

......
ො𝑥0|𝑡

ො𝑥0|𝑡−10 ො𝑥0|𝑡−20

predicted 

clean 
image

predicted 

noise

predicted 

clean 
image

predicted 

noise

𝑡 − 10

𝑡 − 20

noise

noise

Now you have 
DDIM!
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DDIM: The OG diffusion fast sampling algorithm

The pseudocode of the deterministic version of DDIM (also in HW2)

Jiaming Song, Chenlin Meng, Stefano Ermon. “Denoising Diffusion Implicit Models”. ICLR 2021. https://arxiv.org/pdf/2010.02502

https://arxiv.org/pdf/2010.02502
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Any other ways to sample?
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Probability flow ODE:

 

Remember how everything can be ODE now

Cond-OT flow matching:

𝑝0 = 𝑁 0, 𝐼 , 𝑝1 = 𝛿(𝑥1)

𝑥𝑡 = 𝑡𝑥1 + 1 − 𝑡 𝑥0,  𝑥0~𝑝0

𝑝𝑡(𝑥𝑡|𝑥1) = 𝑁(𝑡𝑥1, 1 − 𝑡 2𝐼)

𝑑𝑥𝑡

𝑑𝑡
= 𝑢 𝑥𝑡 𝑥1 = 𝑥1 − 𝑥0

We can use different 
solvers to solve the ODEs!
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Classic ODE solver 1 – Euler solver

𝑥0 𝑥1

𝑥𝑡

𝑣𝜃(𝑥𝑡 , 𝑡)

𝑥𝑡+Δ𝑡

Time 0 Time 1𝑡 𝑡 + Δ𝑡
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Classic ODE solver 2 – Midpoint solver

𝑥0 𝑥1

𝑥𝑡

𝑣𝜃(𝑥𝑡 , 𝑡)

𝑥𝑡+Δ𝑡

Time 0 Time 1𝑡 𝑡 + Δ𝑡
𝑡 +

1

2
Δ𝑡

𝑣𝜃(𝑥
𝑡+

1
2

Δ𝑡
, 𝑡 +

1

2
Δ𝑡)

𝑥
𝑡+

1
2

Δ𝑡 
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Classic ODE solver 3 – 2nd order Heun solver

𝑥0 𝑥1

𝑥𝑡

𝑣𝜃(𝑥𝑡 , 𝑡)

ො𝑥𝑡+Δ𝑡

Time 0 Time 1𝑡 𝑡 + Δ𝑡

𝑣𝜃( ො𝑥𝑡+Δ𝑡 , 𝑡 + Δ𝑡)

𝑥𝑡+Δ𝑡
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Diffusion specific solver – DPM solver

The diffusion ODE is

linear model learned

=
>

Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurIPS 2022. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927


21
21
21

21

Diffusion specific solver – DPM solver

From here

We can channel Taylor expansion

=
>

Can be calculated analytically

Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurIPS 2022. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927
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Diffusion specific solver – DPM solver

Finally we get for k=1

Can be calculated analytically
Can be estimated Ignored 

Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurIPS 2022. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927
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Solver comparison

Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurIPS 2022. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927
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Solver comparison (from Claude)
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Besides sampling, any other ways to improve DDPM?
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Actually there is a paper that studied them all

EDM: What are the actual independent design choices of diffusion models and let’s 

disentangle them as study them one by one
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The design space of diffusion models

The design space of diffusion models

Training Model Sampling

• Prefixed noise schedule

• Training noise sampling 

schedule

• Loss weighting w.r.t. time

• Reparameterization

• Input/Output scaling

• How to do time 

conditioning

• Solver

• Sampling time noise 

schedule

• Number of time steps
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Signal-to-noise ratio (SNR)

Data 𝑥0

𝑡 = 0

𝑥0.25𝑇

𝑡 = 0.25𝑇

𝑥0.5𝑇

𝑡 = 0.5𝑇

𝑥0.75𝑇

𝑡 = 0.75𝑇

Noise 𝑥𝑇

𝑡 = 𝑇

Cat stolen from Chieh-Hsin (Jesse) Lai

No noise, 

all signal

All noise, 

no signal
Some noise, 

some signal

SNR = Signal/Noise

SNR = 
𝛼𝑡

2

𝜎𝑡
2

easy
easy

Hard!!!
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SNR Attempt 1: Linear scheduler -> Cosine scheduler

Nichol & Dhariwal. “Improved Denoising Diffusion Probabilistic Models”. ICML 2021. https://arxiv.org/pdf/2206.00927

https://arxiv.org/pdf/2206.00927
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SNR Attempt 1.5: You can even learn your schedule

Kingma et al. “Variational Diffusion Models”. NeurIPS 2021. https://arxiv.org/pdf/2107.00630

https://arxiv.org/pdf/2107.00630
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Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurIPS 2022. https://arxiv.org/pdf/2206.00364

SNR Attempt 2: At sampling time, you can also spend 
more time on the more difficult noise levels!

SNR Attempt 3: You should parameterize your model 
to take the actual noise level (𝝈 or log𝝈) instead of 
timesteps!

• Scheduler invariant parameterization

• Continuous => Easier to do make inference time changes (fewer/more steps)

• Better numerical scaling

https://arxiv.org/pdf/2206.00364
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SNR Attempt 4: Train on harder time steps more

Just sampling the more difficult time steps to more frequently during training time!

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurIPS 2022. https://arxiv.org/pdf/2206.00364

https://arxiv.org/pdf/2206.00364
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SNR Attempt 5: Weight different timestep differently 
according to their SNR

The gradient 

scale varies a lot 

depending on 

the SNR 

Apply a weighting scalar 

to balance it out!

=
>

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurIPS 2022. https://arxiv.org/pdf/2206.00364

https://arxiv.org/pdf/2206.00364
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SNR Attempt 6: Reparameterization

Predict noise (𝝐𝜽(𝒙𝒕, 𝒕)):

• Easy at high noise (low SNR)

• Hard at low noise (high SNR)

Data 𝑥0

𝑡 = 0

𝑥0.25𝑇

𝑡 = 0.25𝑇

𝑥0.5𝑇

𝑡 = 0.5𝑇

𝑥0.75𝑇

𝑡 = 0.75𝑇

Noise 𝑥𝑇

𝑡 = 𝑇

Predict clean signal (𝒙𝟎,𝜽(𝒙𝒕, 𝒕)):

• Easy at low noise (high SNR)

• Hard at high noise (low SNR)

Something in between?
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SNR Attempt 6: Reparameterization

Predict noise (𝝐𝜽(𝒙𝒕, 𝒕)):

• Easy at high noise (low SNR)

• Hard at low noise (high SNR)

Data 𝑥0

𝑡 = 0

𝑥0.25𝑇

𝑡 = 0.25𝑇

𝑥0.5𝑇

𝑡 = 0.5𝑇

𝑥0.75𝑇

𝑡 = 0.75𝑇

Noise 𝑥𝑇

𝑡 = 𝑇

Predict clean signal (𝒙𝟎,𝜽(𝒙𝒕, 𝒕)):

• Easy at low noise (high SNR)

• Hard at high noise (low SNR)

Predict interpolation 

(a.k.a velocity 𝒗𝜽(𝒙𝒕, 𝒕)):

• Good balance!

• 𝑣 = 𝛼𝑡𝜖 − 𝜎𝑡𝑥0

Salimans & Ho. “Progressive Distillation for Fast Sampling of Diffusion Models”. ICLR 2022. https://arxiv.org/pdf/2202.00512

https://arxiv.org/pdf/2202.00512
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Another way to do network parameterization?

Remember how previously we want to do v-prediction as our target

𝑣 = 𝛼𝑡𝜖 − 𝜎𝑡𝑥0

Now notice how 𝑥𝑡 is also a mixture of noise and clean data

 The network should reuse some information in 𝑥𝑡 

 Skip connection!

A mixture of noise 

and clean data
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Input/Output scaling & Preconditioning

Predicts clean data x0

• When 𝑡 → 0, 𝜎 → 0 => input is mostly clean => can directly pass through more

• When 𝑡 → 1, 𝜎 → ∞ => input is mostly noise => should ignore most of the input 

and rely on the network prediction more

Skip connection weight Network output weight Trained network

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurIPS 2022. https://arxiv.org/pdf/2206.00364

Rescale input

Time/noise 

conditioning

https://arxiv.org/pdf/2206.00364
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Input/Output scaling & Preconditioning

Predicts clean data x0

We also want:

• The network input to have unit variance

• Training target to have unit variance

• Reuse information in input as much as possible

=> 𝑐skip 𝜎 =
𝜎data

2

𝜎2+𝜎data
2 , 𝑐out 𝜎 =

𝜎𝜎data

𝜎2+𝜎data
2

, 𝑐in 𝜎 =
1

𝜎2+𝜎data
2

, 𝑐noise 𝜎 =
1

4
log 𝜎

Skip connection weight Network output weight Trained network

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurIPS 2022. https://arxiv.org/pdf/2206.00364

Rescale input

Time/noise 

conditioning

https://arxiv.org/pdf/2206.00364


39
39
39

39

The design space of diffusion models

The design space of diffusion models

Training Model Sampling

• Prefixed noise schedule

• Training noise sampling 

schedule

• Loss weighting w.r.t. time

• Reparameterization

• Input/Output scaling

• How to do time 

conditioning

• Solver

• Sampling time noise 

schedule

• Number of time steps



40
40
40

40

Next class we will learn how to turn an 
unconditional diffusion model into a conditional one
Spoiler alert: You may or may not need to train for it!

Image from http://makeameme.org/meme/spoilers-are-coming

http://makeameme.org/meme/spoilers-are-coming
http://makeameme.org/meme/spoilers-are-coming
http://makeameme.org/meme/spoilers-are-coming
http://makeameme.org/meme/spoilers-are-coming
http://makeameme.org/meme/spoilers-are-coming
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