

Carnegie Mellon University

Lecture 6: The Design Space of Diffusion Models & Solvers for Fast Sampling

Yutong (Kelly) He

10-799 *Diffusion & Flow Matching*, Jan 27th, 2026

Housekeeping Announcements

- Homework 2 is out! <https://kellyyutonghe.github.io/10799S26/homework/>
 - Due date: 2/3 Tue, Late Due date: 2/5 Thur
 - Training models takes time! Start early!
 - Maybe change in due date? Vote in Discord!
- Quiz 3 next class!

Now that we have learned the basics

Is DDPM perfect now? What can we improve?

Us defending our DDPM model from HW1 be like...

Carnegie
Mellon
University

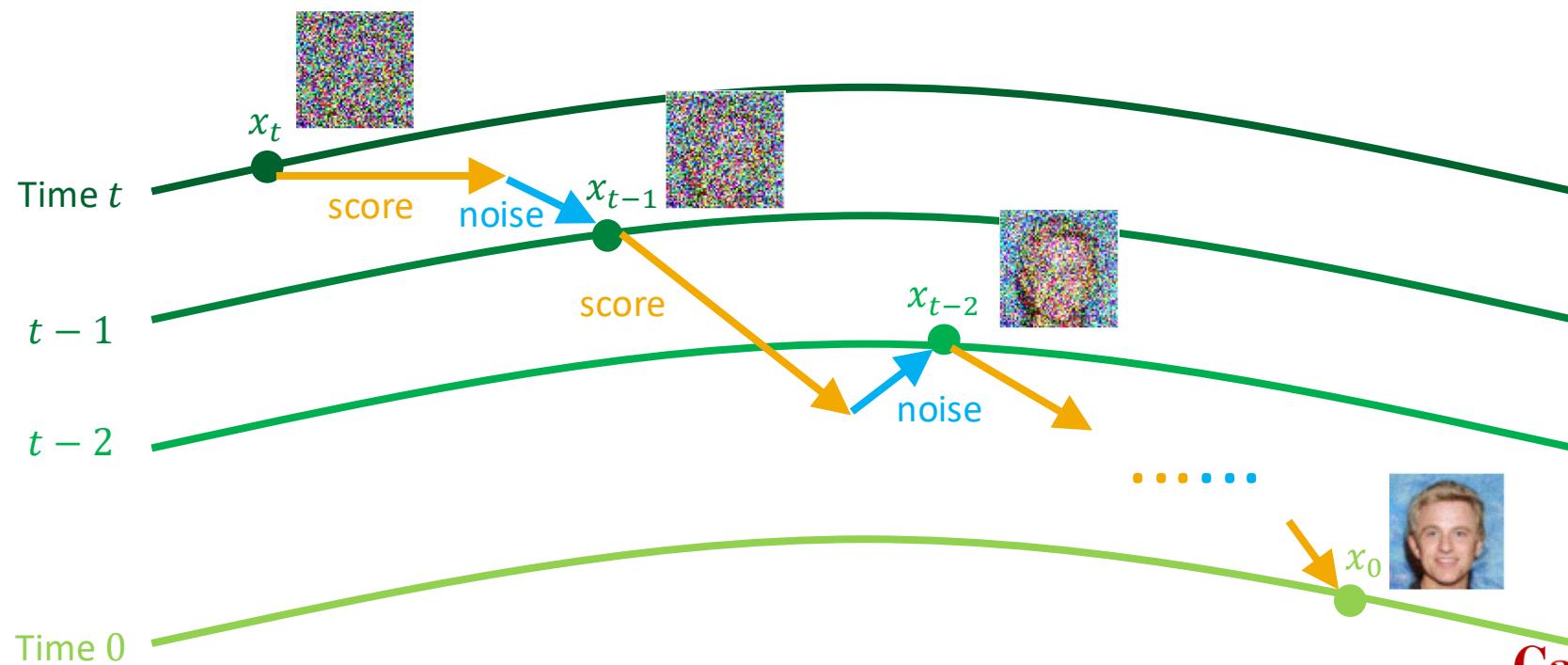
Vanilla DDPM is sloooooooow

- Take 1000 steps to generate an image
- The image quality severely degrades if you use fewer steps
- Scaling to higher resolution/larger model size becomes nightmare

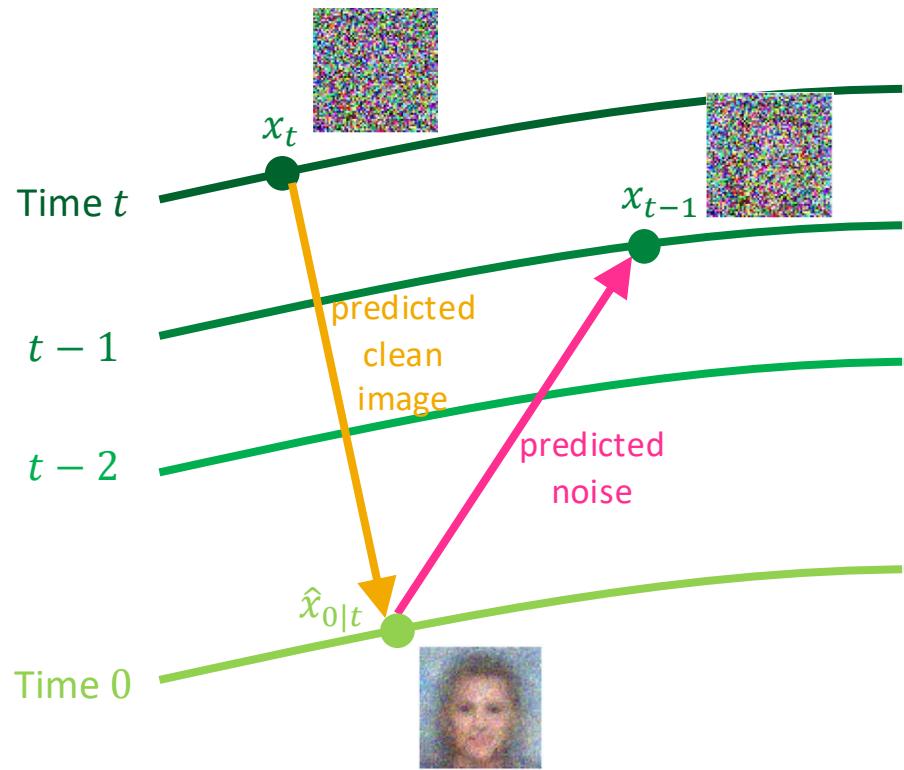
=>

- Any application that needs real time generation
- Video is going to be a big pain
- GPU cost

Currently, the DDPM sampling is like



But there is another way!



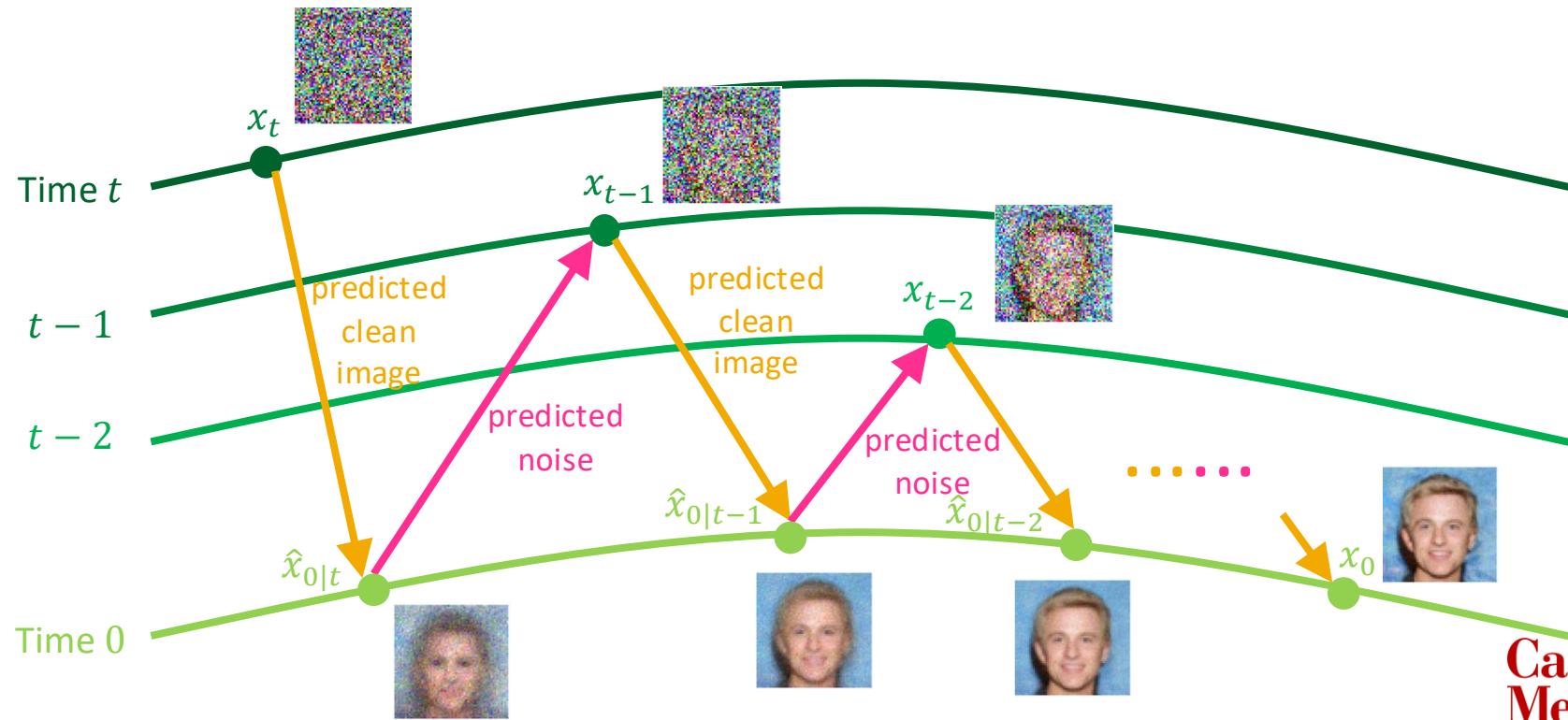
We know $x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon$, and our model predicts $\epsilon_\theta(x_t, t) \approx \epsilon$, then

$$\hat{x}_{0|t} \approx \frac{1}{\sqrt{\bar{\alpha}_t}}(x_t - \sqrt{1 - \bar{\alpha}_t}\epsilon_\theta(x_t, t))$$

And

$$x_{t-1} \approx \sqrt{\bar{\alpha}_{t-1}}\hat{x}_{0|t} + \sqrt{1 - \bar{\alpha}_{t-1}}\epsilon_\theta(x_t, t)$$

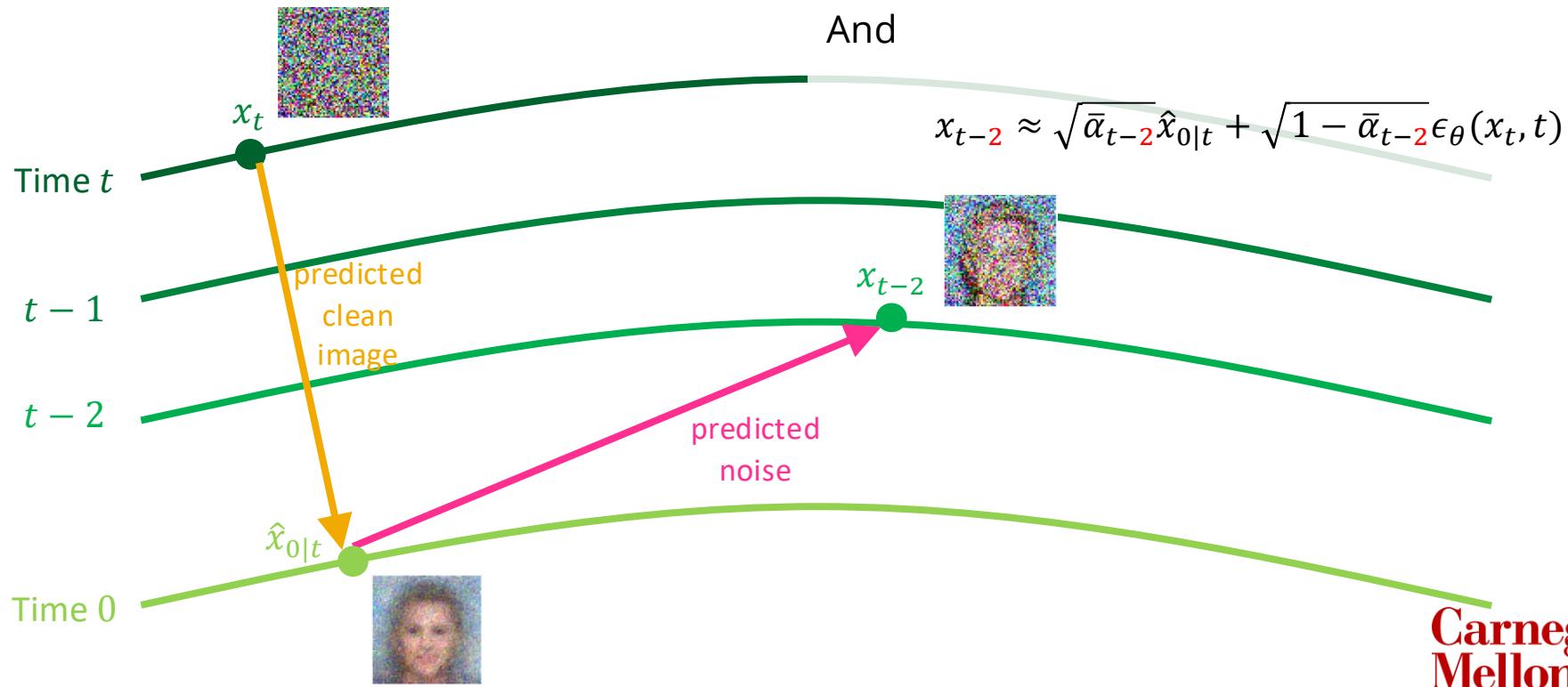
So we can also do sampling like this



Now what if we skip t-1

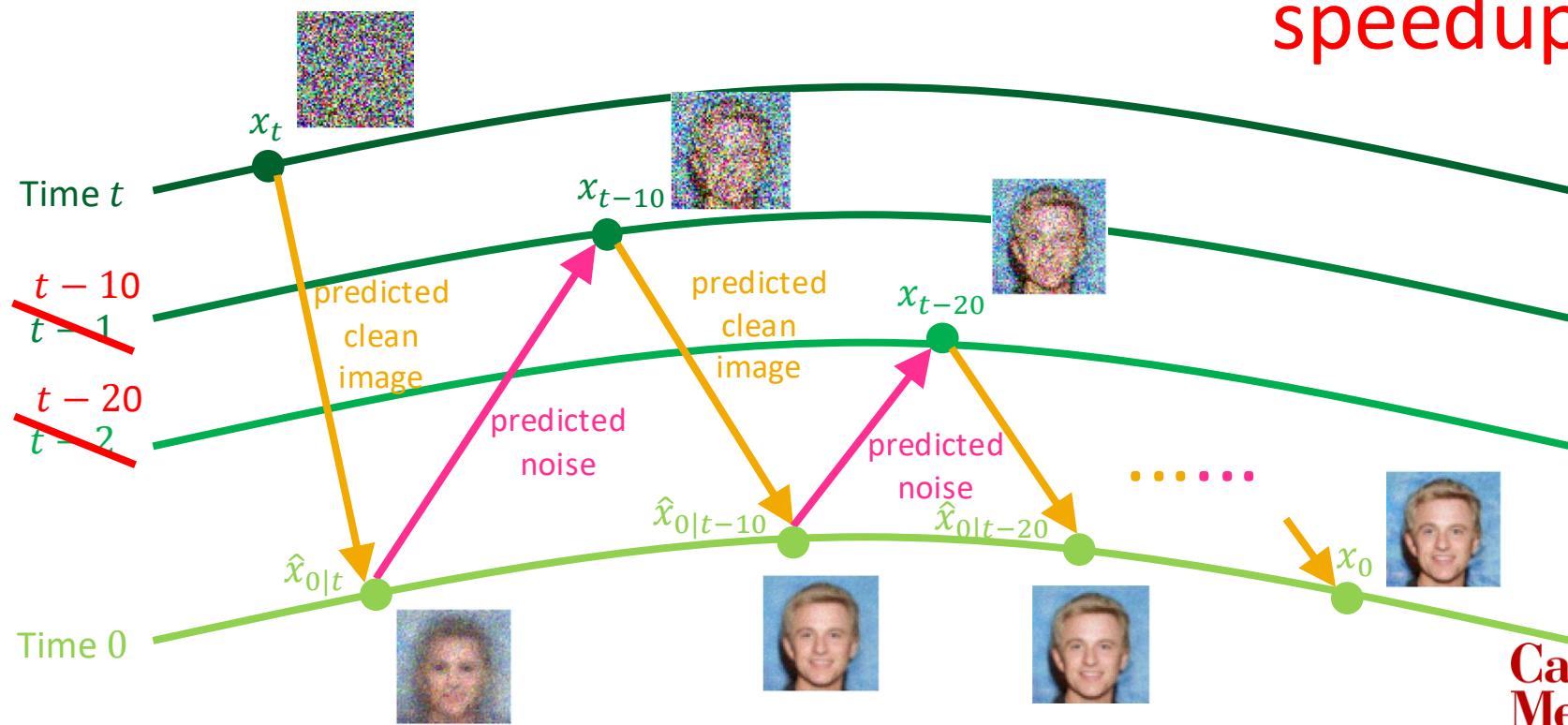
$$\hat{x}_{0|t} \approx \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t, t))$$

And

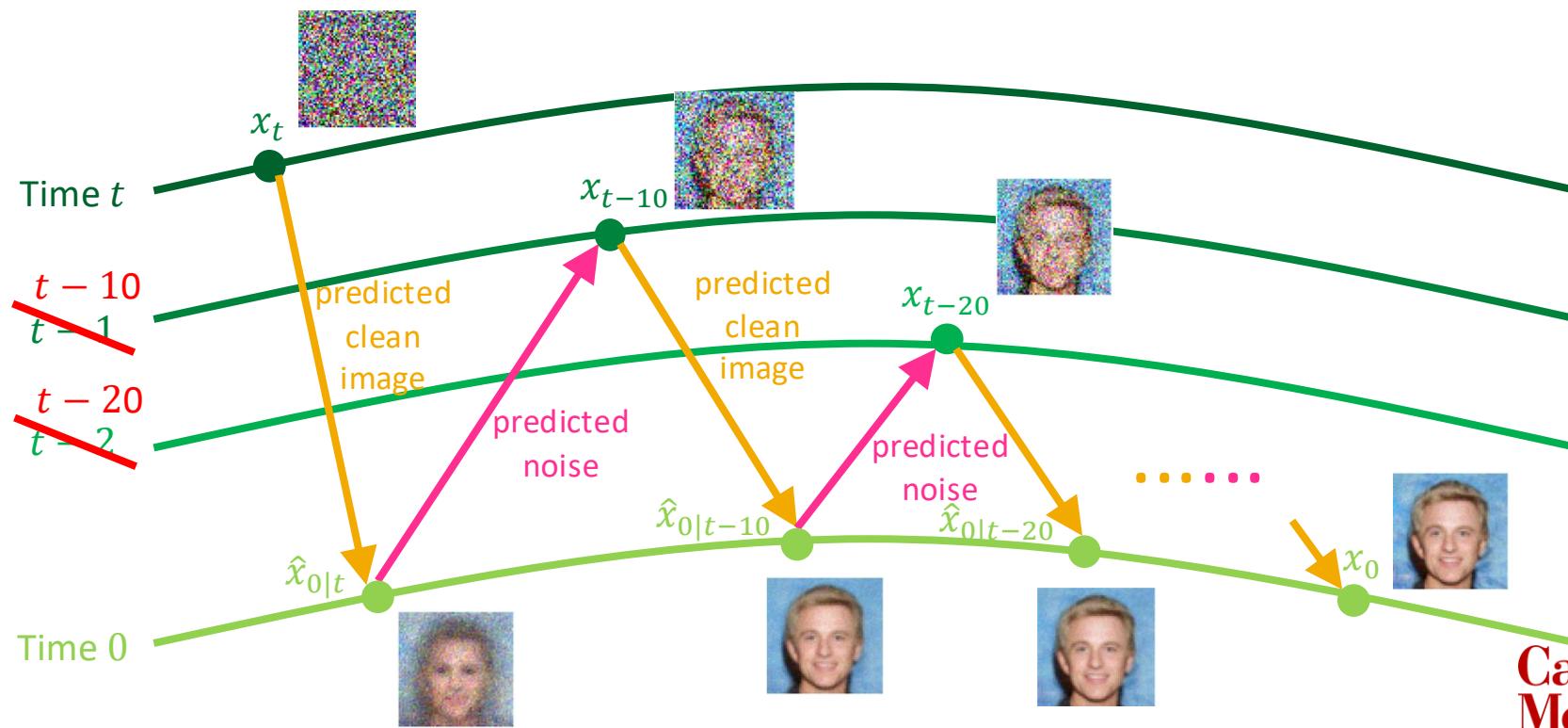


We can skip more than 1 step!

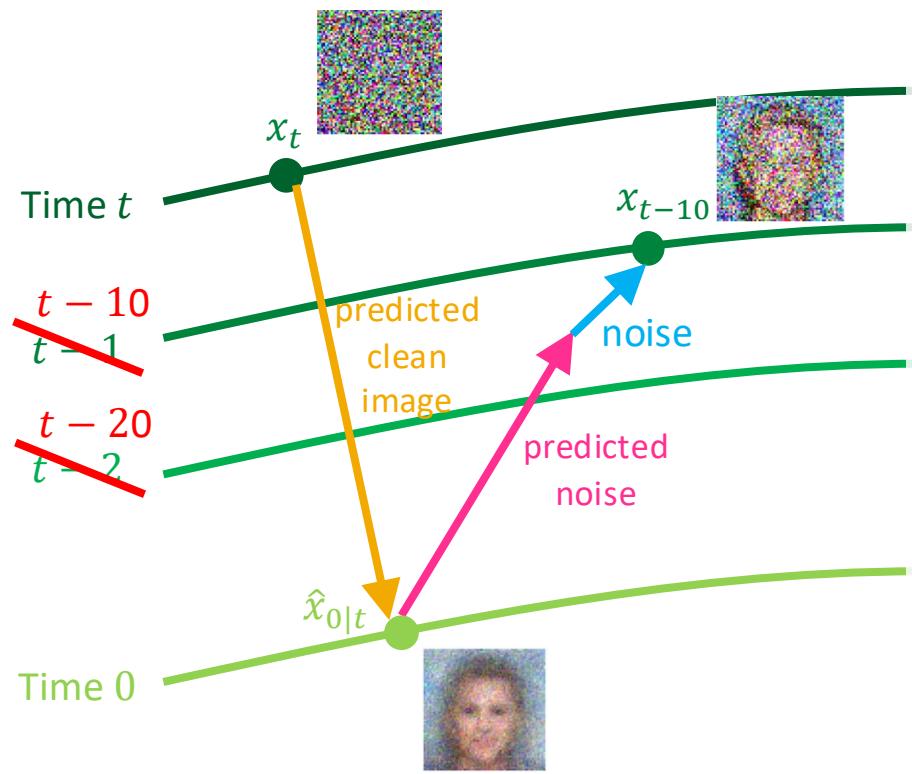
10X
speedup!



Notice how right now everything is deterministic



But we can add the stochasticity back!



We know $x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon$, and our model predicts $\epsilon_\theta(x_t, t) \approx \epsilon$, then

$$\hat{x}_{0|t} \approx \frac{1}{\sqrt{\bar{\alpha}_t}}(x_t - \sqrt{1 - \bar{\alpha}_t}\epsilon_\theta(x_t, t))$$

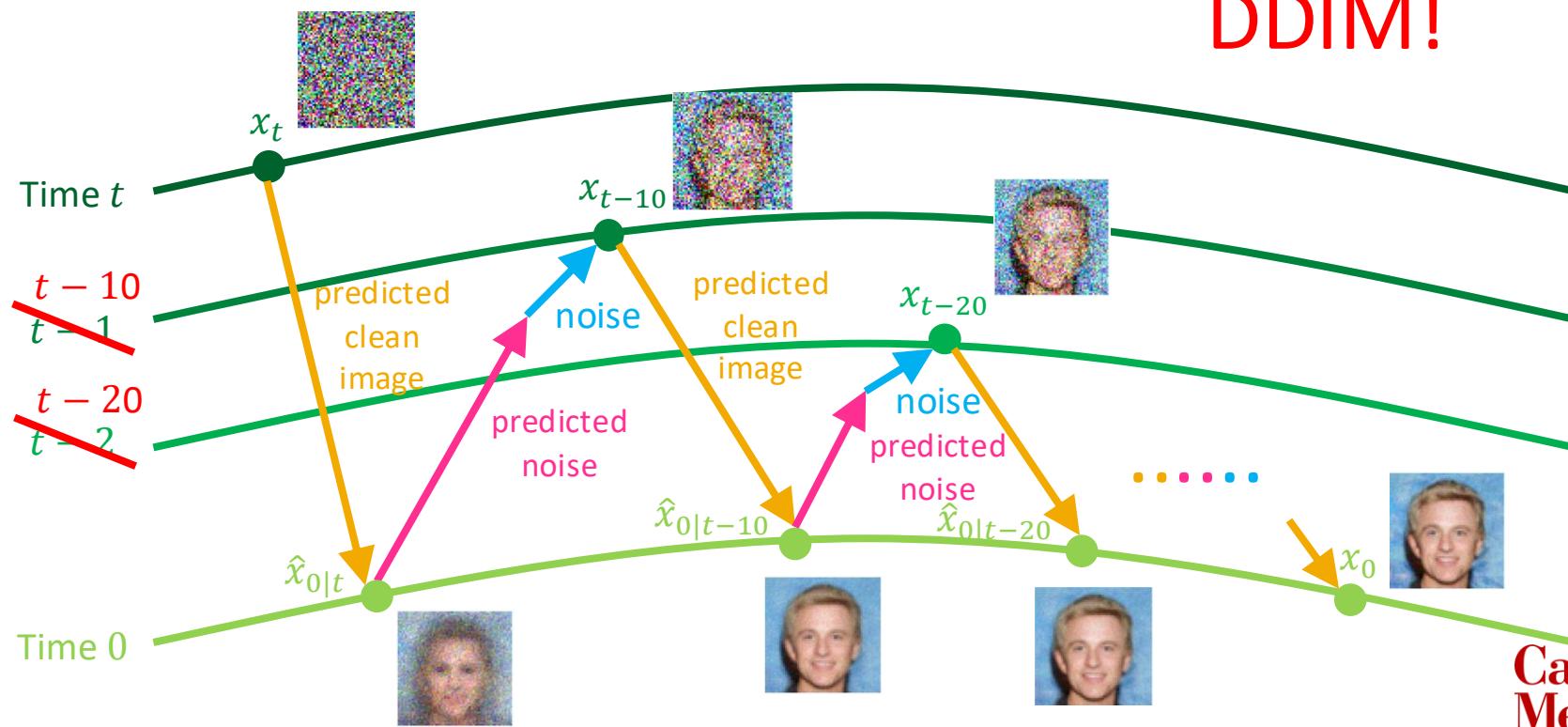
And

$$x_{t-1} \approx \sqrt{\bar{\alpha}_{t-1}}\hat{x}_{0|t} + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2}\epsilon_\theta(x_t, t) + \sigma_t z$$

for constant σ_t and $z \sim N(0, I)$

Putting everything together

Now you have
DDIM!



DDIM: The OG diffusion fast sampling algorithm

$$\mathbf{x}_{t-1} = \underbrace{\sqrt{\alpha_{t-1}} \left(\frac{\mathbf{x}_t - \sqrt{1 - \alpha_t} \epsilon_\theta^{(t)}(\mathbf{x}_t)}{\sqrt{\alpha_t}} \right)}_{\text{“predicted } \mathbf{x}_0\text{”}} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_\theta^{(t)}(\mathbf{x}_t)}_{\text{“direction pointing to } \mathbf{x}_t\text{”}} + \underbrace{\sigma_t \epsilon_t}_{\text{random noise}}$$

The pseudocode of the deterministic version of DDIM (also in HW2)

Algorithm 1 DDIM Sampling

Require: trained noise predictor ϵ_θ , number of steps S , noise schedules $\bar{\alpha}$

- 1: Sample $x_T \sim \mathcal{N}(0, I)$
- 2: Create timestep subsequence $[\tau_S, \tau_{S-1}, \dots, \tau_1]$ from $[T, \dots, 1]$ ▷ e.g., [1000, 900, 800, ...]
- 3: **for** $i = S, S-1, \dots, 1$ **do**
- 4: $t \leftarrow \tau_i$
- 5: $t_{\text{prev}} \leftarrow \tau_{i-1}$ (or 0 if $i = 1$)
- 6: $\epsilon \leftarrow \epsilon_\theta(x_t, t)$ ▷ Predict noise using your trained DDPM
- 7: $\hat{x}_0 \leftarrow \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon}{\sqrt{\bar{\alpha}_t}}$ ▷ Predict clean image
- 8: $x_{t_{\text{prev}}} \leftarrow \sqrt{\bar{\alpha}_{t_{\text{prev}}}} \cdot \hat{x}_0 + \sqrt{1 - \bar{\alpha}_{t_{\text{prev}}}} \cdot \epsilon$ ▷ DDIM step
- 9: **end for**
- 10: **return** x_0

Any other ways to sample?

Remember how everything can be ODE now

Cond-OT flow matching:

$$p_0 = N(0, I), p_1 = \delta(x_1)$$

$$x_t = tx_1 + (1 - t)x_0, \quad x_0 \sim p_0$$

$$p_t(x_t|x_1) = N(tx_1, (1 - t)^2 I)$$

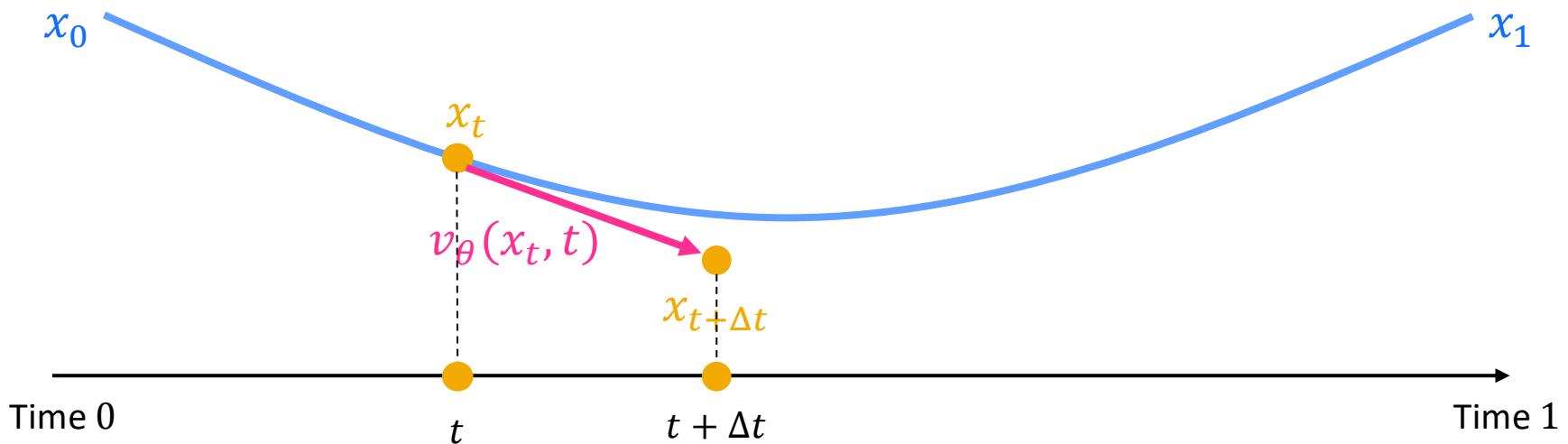
$$\frac{dx_t}{dt} = u(x_t|x_1) = x_1 - x_0$$

Probability flow ODE:

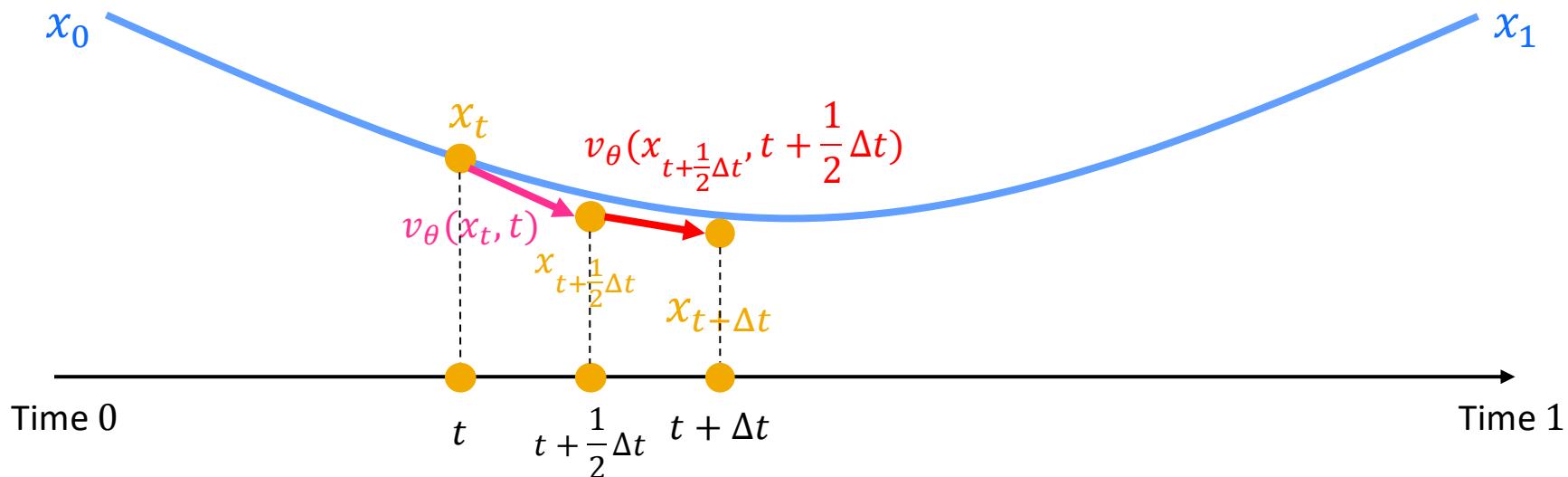
$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) \right] dt,$$

We can use different solvers to solve the ODEs!

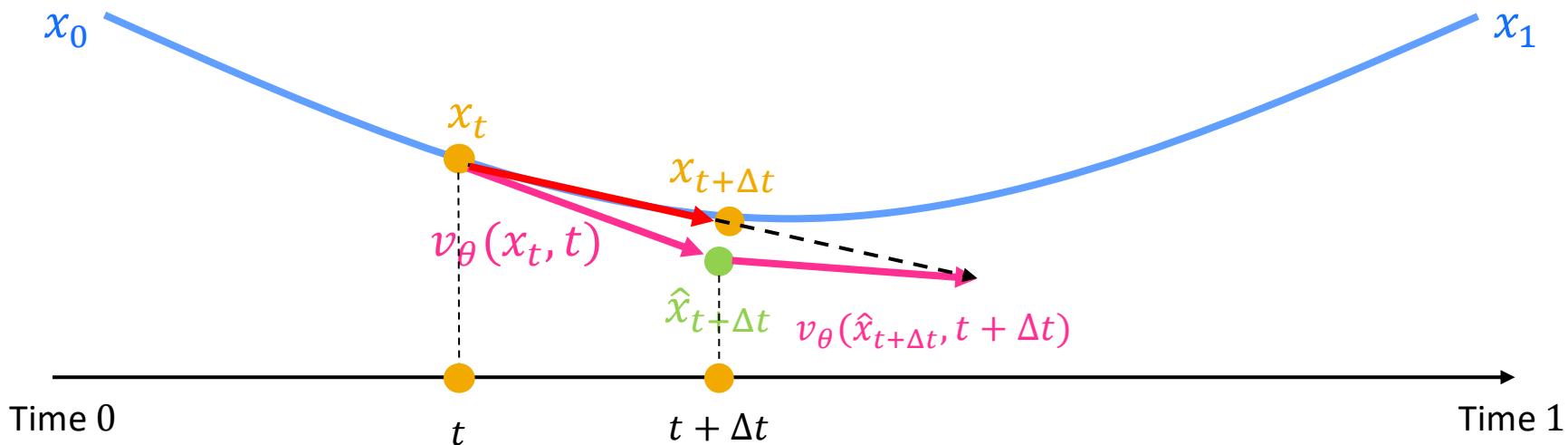
Classic ODE solver 1 – Euler solver



Classic ODE solver 2 – Midpoint solver



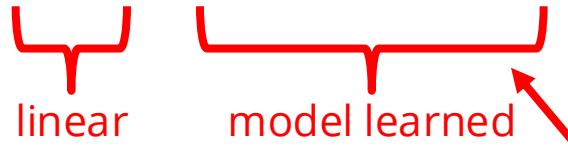
Classic ODE solver 3 – 2nd order Heun solver



Diffusion specific solver – DPM solver

The diffusion ODE is

$$\frac{dx_t}{dt} = f(t)x_t - \frac{1}{2}g^2(t)\nabla_x \log q_t(x_t),$$



$$f(t) = d \log \alpha_t / dt$$

$$g^2(t) = \frac{d\sigma_t^2}{dt} - 2 \frac{d \log \alpha_t}{dt} \sigma_t^2 = 2\sigma_t^2 \left(\frac{d \log \sigma_t}{dt} - \frac{d \log \alpha_t}{dt} \right) = -2\sigma_t^2 \frac{d\lambda_t}{dt}.$$

↓

$$x_t = e^{\int_s^t f(\tau) d\tau} x_s + \int_s^t \left(e^{\int_\tau^t f(r) dr} \frac{g^2(\tau)}{2\sigma_\tau} \epsilon_\theta(x_\tau, \tau) \right) d\tau.$$

Diffusion specific solver – DPM solver

From here

$$\mathbf{x}_{t_{i-1} \rightarrow t_i} = \frac{\alpha_{t_i}}{\alpha_{t_{i-1}}} \tilde{\mathbf{x}}_{t_{i-1}} - \alpha_{t_i} \int_{\lambda_{t_{i-1}}}^{\lambda_{t_i}} e^{-\lambda} \hat{\epsilon}_\theta(\hat{\mathbf{x}}_\lambda, \lambda) d\lambda.$$

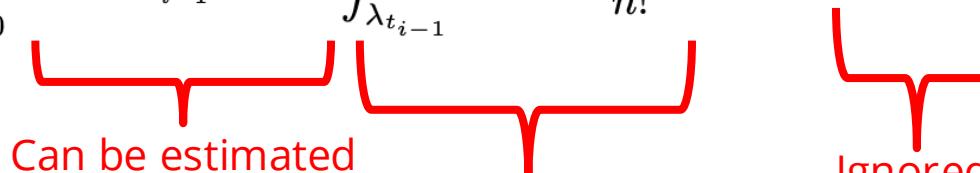
We can channel Taylor expansion

$$\hat{\epsilon}_\theta(\hat{\mathbf{x}}_\lambda, \lambda) = \sum_{n=0}^{k-1} \frac{(\lambda - \lambda_{t_{i-1}})^n}{n!} \hat{\epsilon}_\theta^{(n)}(\hat{\mathbf{x}}_{\lambda_{t_{i-1}}}, \lambda_{t_{i-1}}) + \mathcal{O}((\lambda - \lambda_{t_{i-1}})^k),$$

$$\mathbf{x}_{t_{i-1} \rightarrow t_i} = \frac{\alpha_{t_i}}{\alpha_{t_{i-1}}} \tilde{\mathbf{x}}_{t_{i-1}} - \alpha_{t_i} \sum_{n=0}^{k-1} \hat{\epsilon}_\theta^{(n)}(\hat{\mathbf{x}}_{\lambda_{t_{i-1}}}, \lambda_{t_{i-1}}) \int_{\lambda_{t_{i-1}}}^{\lambda_{t_i}} e^{-\lambda} \frac{(\lambda - \lambda_{t_{i-1}})^n}{n!} d\lambda + \mathcal{O}(h_i^{k+1}),$$

Can be calculated analytically

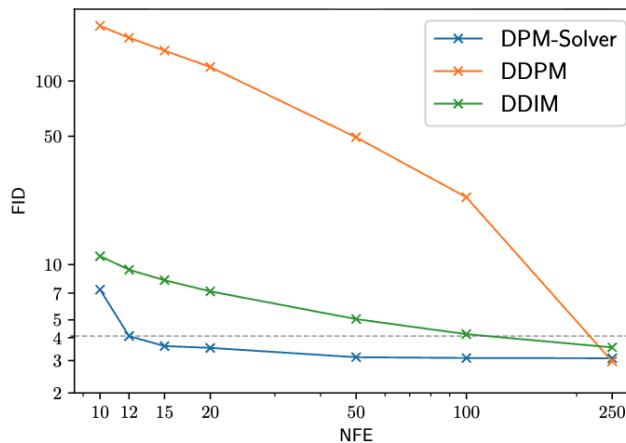
Diffusion specific solver – DPM solver

$$\mathbf{x}_{t_{i-1} \rightarrow t_i} = \frac{\alpha_{t_i}}{\alpha_{t_{i-1}}} \tilde{\mathbf{x}}_{t_{i-1}} - \alpha_{t_i} \sum_{n=0}^{k-1} \hat{\epsilon}_\theta^{(n)}(\hat{\mathbf{x}}_{\lambda_{t_{i-1}}}, \lambda_{t_{i-1}}) \int_{\lambda_{t_{i-1}}}^{\lambda_{t_i}} e^{-\lambda} \frac{(\lambda - \lambda_{t_{i-1}})^n}{n!} d\lambda + \mathcal{O}(h_i^{k+1}),$$


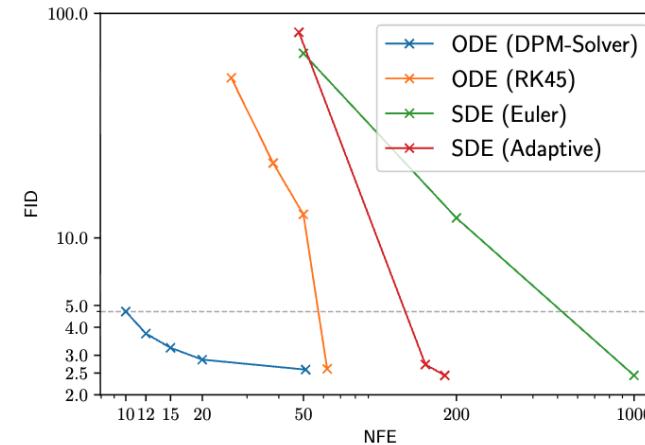
Finally we get for $k=1$

$$\tilde{\mathbf{x}}_{t_i} = \frac{\alpha_{t_i}}{\alpha_{t_{i-1}}} \tilde{\mathbf{x}}_{t_{i-1}} - \sigma_{t_i} (e^{h_i} - 1) \epsilon_\theta(\tilde{\mathbf{x}}_{t_{i-1}}, t_{i-1})$$

Solver comparison

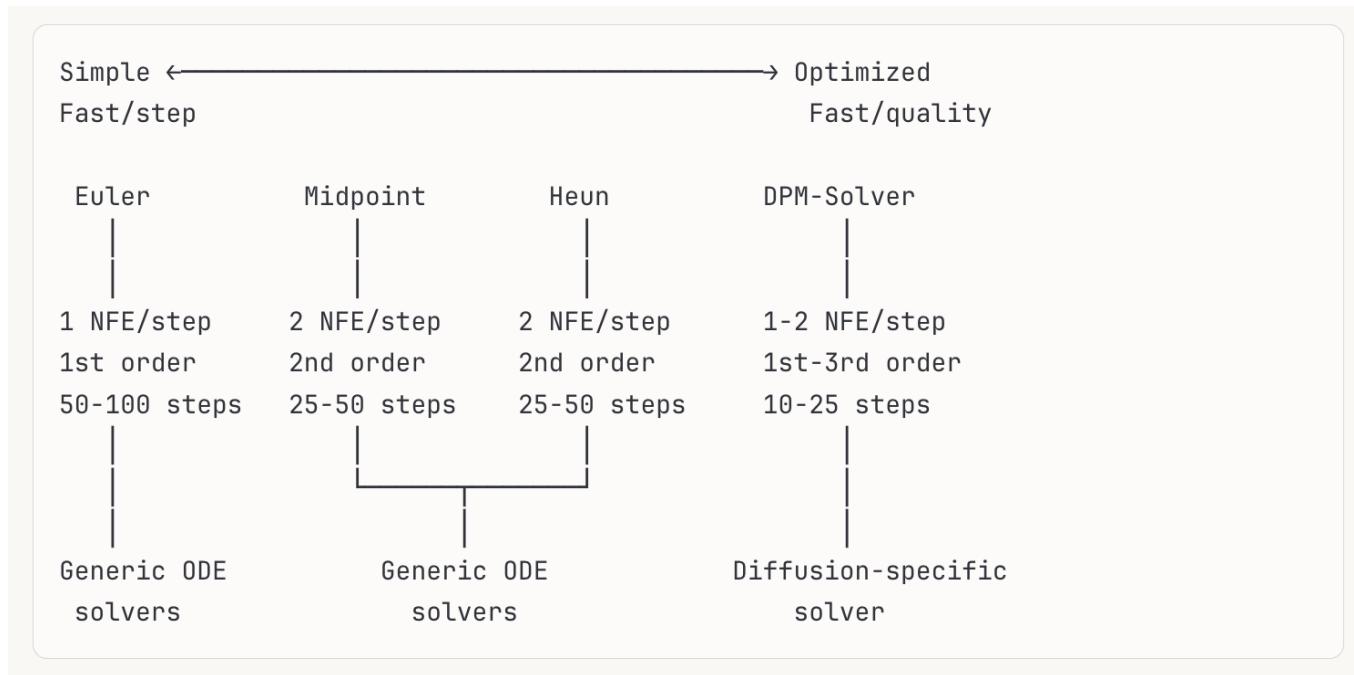


(e) ImageNet 128x128 (discrete)



(a) CIFAR-10 (continuous)

Solver comparison (from Claude)



Besides sampling, any other ways to improve DDPM?

Actually there is a paper that studied them all

EDM: What are the actual independent design choices of diffusion models and let's disentangle them as study them one by one

Elucidating the Design Space of Diffusion-Based Generative Models

Tero Karras
NVIDIA

Miika Aittala
NVIDIA

Timo Aila
NVIDIA

Samuli Laine
NVIDIA

The design space of diffusion models

The design space of diffusion models

Training

- Prefixed noise schedule
- Training noise sampling schedule
- Loss weighting w.r.t. time

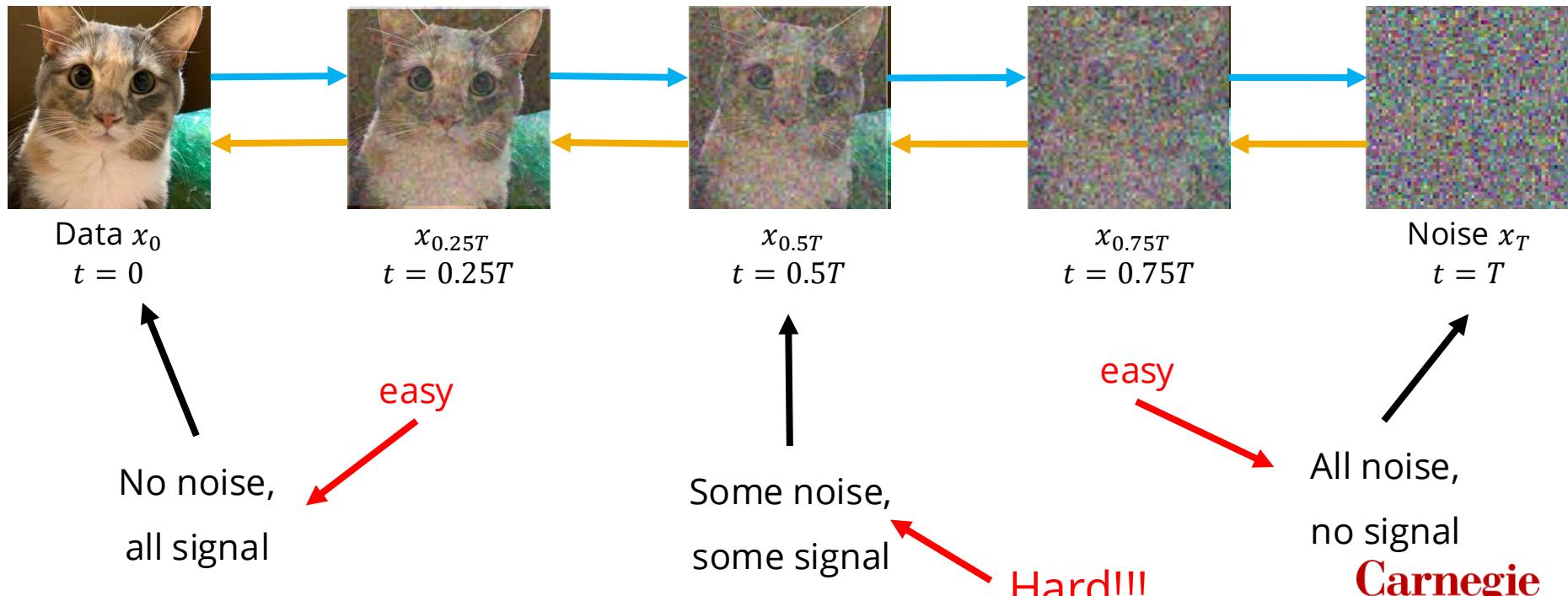
Model

- Reparameterization
- Input/Output scaling
- How to do time conditioning

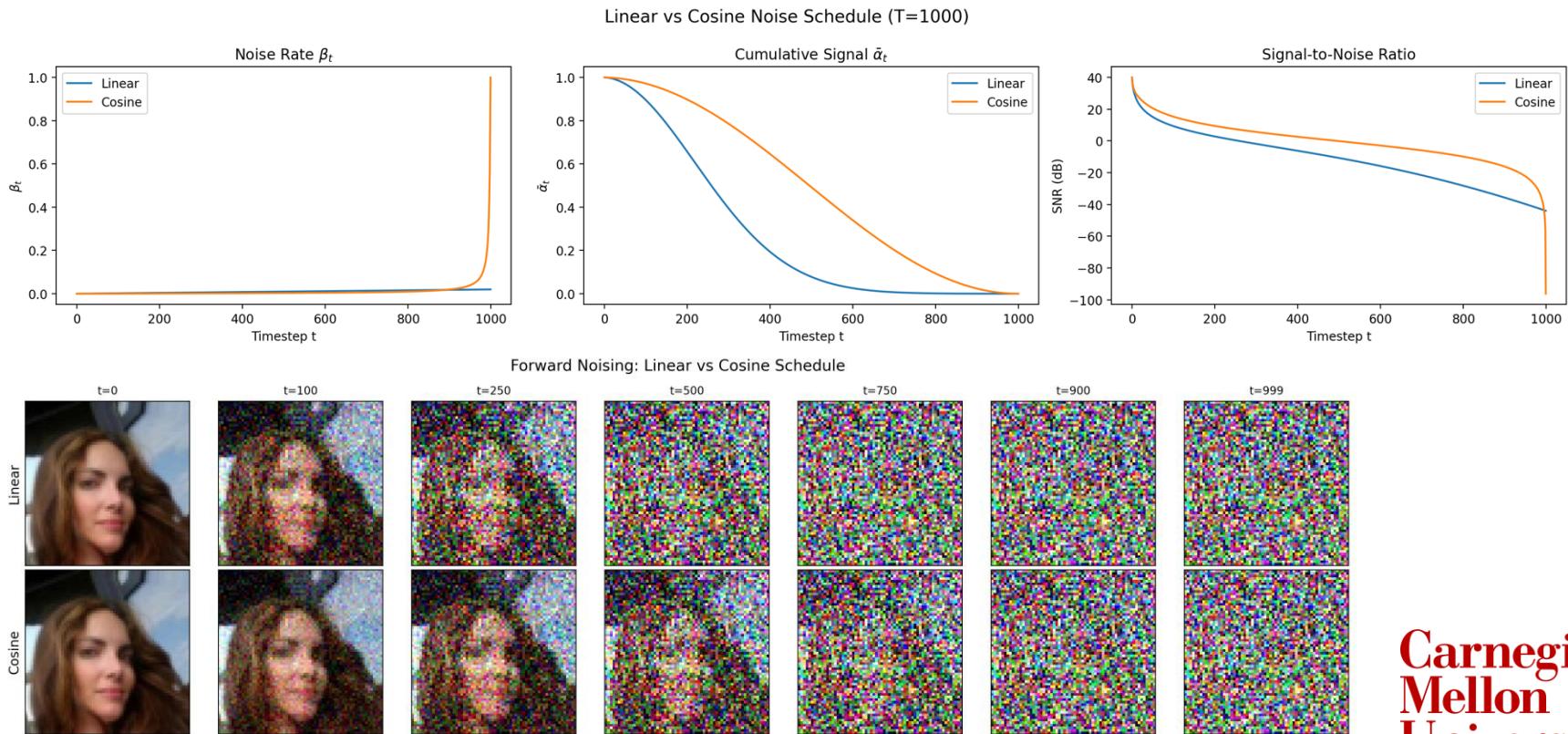
Sampling

- Solver
- Sampling time noise schedule
- Number of time steps

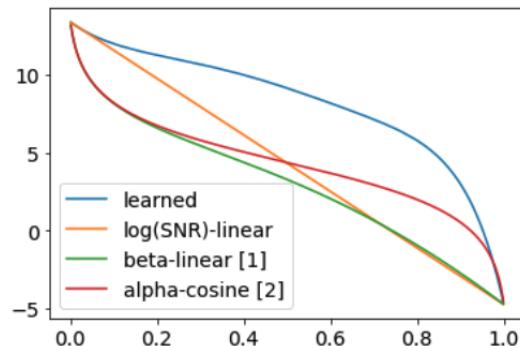
Signal-to-noise ratio (SNR)



SNR Attempt 1: Linear scheduler \rightarrow Cosine scheduler



SNR Attempt 1.5: You can even learn your schedule

(a) log SNR vs time t

SNR(t) schedule	Var(BPD)
Learned (ours)	0.53
log SNR-linear	6.35
β -Linear [1]	31.6
α -Cosine [2]	31.1

(b) Variance of VLB estimate

SNR Attempt 2: At sampling time, you can also spend more time on the more difficult noise levels!

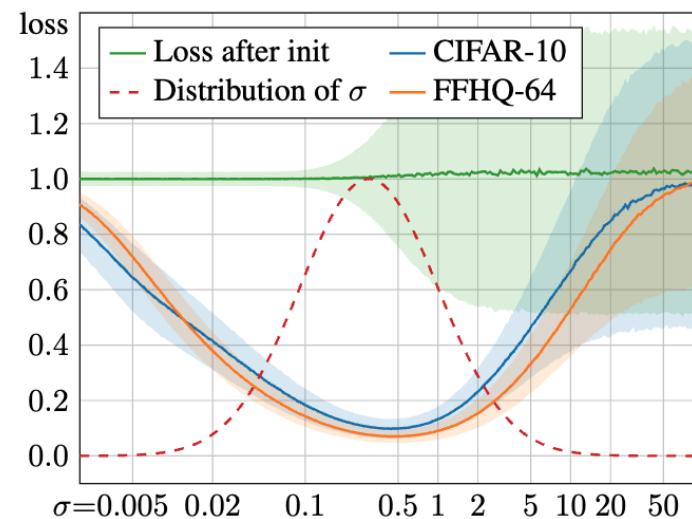
$$\sigma_{i < N} = \left(\sigma_{\max}^{\frac{1}{\rho}} + \frac{i}{N-1} (\sigma_{\min}^{\frac{1}{\rho}} - \sigma_{\max}^{\frac{1}{\rho}}) \right)^{\rho} \quad \text{and} \quad \sigma_N = 0.$$

SNR Attempt 3: You should parameterize your model to take the actual noise level (σ or $\log \sigma$) instead of timesteps!

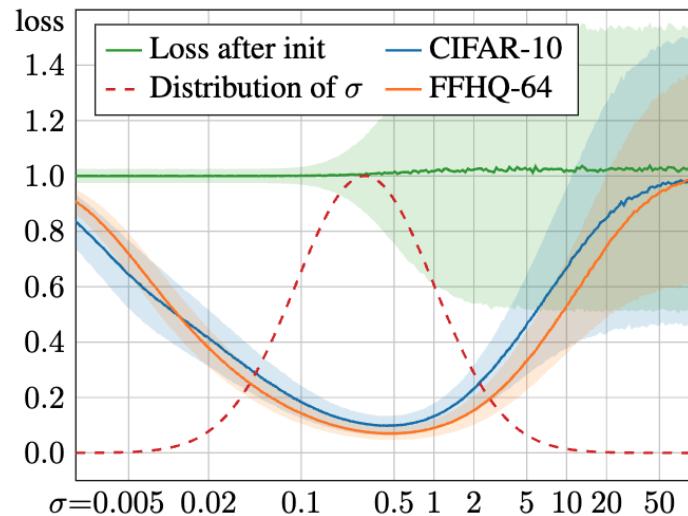
- Scheduler invariant parameterization
- Continuous => Easier to do make inference time changes (fewer/more steps)
- Better numerical scaling

SNR Attempt 4: Train on harder time steps more

Just sampling the more difficult time steps to more frequently during training time!



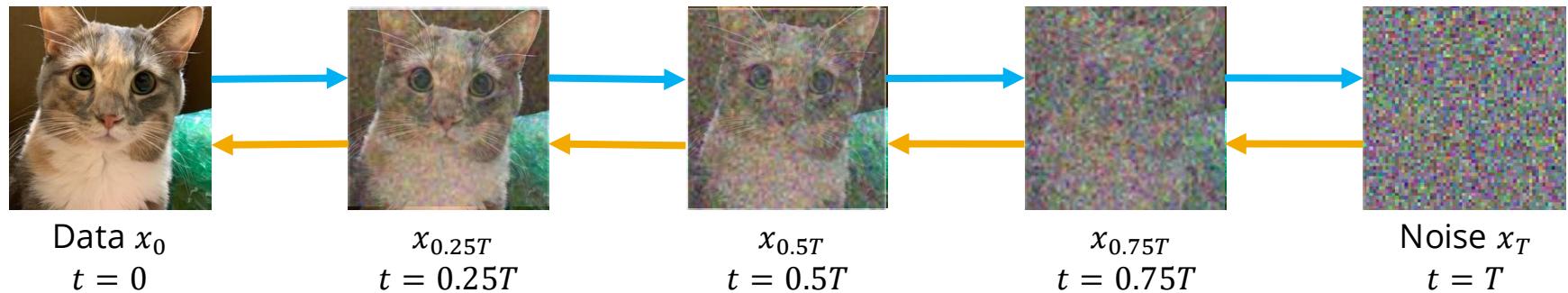
SNR Attempt 5: Weight different timestep differently according to their SNR



The gradient scale varies a lot depending on the SNR

||
↓
Apply a weighting scalar to balance it out!

SNR Attempt 6: Reparameterization



Predict clean signal ($x_{0,\theta}(x_t, t)$):

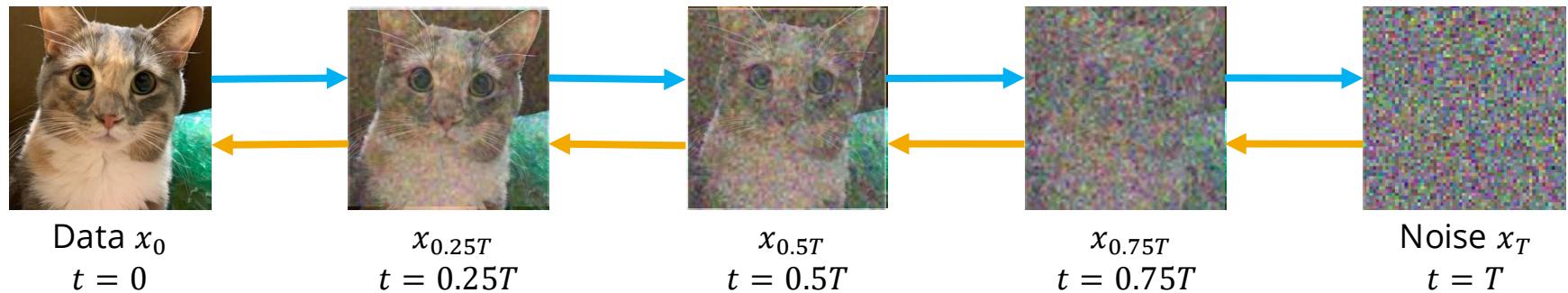
- Easy at low noise (high SNR)
- Hard at high noise (low SNR)

Predict noise ($\epsilon_\theta(x_t, t)$):

- Easy at high noise (low SNR)
- Hard at low noise (high SNR)

Something in between?

SNR Attempt 6: Reparameterization



Predict clean signal ($x_{0,\theta}(x_t, t)$):

- Easy at low noise (high SNR)
- Hard at high noise (low SNR)

Predict interpolation (a.k.a velocity $v_\theta(x_t, t)$):

- Good balance!
- $v = \alpha_t \epsilon - \sigma_t x_0$

Predict noise ($\epsilon_\theta(x_t, t)$):

- Easy at high noise (low SNR)
- Hard at low noise (high SNR)

Another way to do network parameterization?

Remember how previously we want to do v-prediction as our target

$$v = \alpha_t \epsilon - \sigma_t x_0$$

Now notice how x_t is also a mixture of noise and clean data

- ⇒ The network should reuse some information in x_t
- ⇒ Skip connection!

A mixture of noise
and clean data

Input/Output scaling & Preconditioning

$$D_\theta(\mathbf{x}; \sigma) = c_{\text{skip}}(\sigma) \mathbf{x} + c_{\text{out}}(\sigma) F_\theta(c_{\text{in}}(\sigma) \mathbf{x}; c_{\text{noise}}(\sigma)),$$

↑ Rescale input ↑ Time/noise conditioning
↑ Predicts clean data \mathbf{x}_0 Skip connection weight Network output weight Trained network

- When $t \rightarrow 0, \sigma \rightarrow 0 \Rightarrow$ input is mostly clean \Rightarrow can directly pass through more
- When $t \rightarrow 1, \sigma \rightarrow \infty \Rightarrow$ input is mostly noise \Rightarrow should ignore most of the input and rely on the network prediction more

Input/Output scaling & Preconditioning

$$D_\theta(\mathbf{x}; \sigma) = c_{\text{skip}}(\sigma) \mathbf{x} + c_{\text{out}}(\sigma) F_\theta(c_{\text{in}}(\sigma) \mathbf{x}; c_{\text{noise}}(\sigma)),$$

↑ Rescale input
↑ Time/noise
↑ conditioning
↑ Predicts clean data \mathbf{x}_0 Skip connection weight Network output weight Trained network

We also want:

- The network input to have unit variance
- Training target to have unit variance
- Reuse information in input as much as possible

$$\Rightarrow c_{\text{skip}}(\sigma) = \frac{\sigma_{\text{data}}^2}{\sigma^2 + \sigma_{\text{data}}^2}, c_{\text{out}}(\sigma) = \frac{\sigma \sigma_{\text{data}}}{\sqrt{\sigma^2 + \sigma_{\text{data}}^2}}, c_{\text{in}}(\sigma) = \frac{1}{\sqrt{\sigma^2 + \sigma_{\text{data}}^2}}, c_{\text{noise}}(\sigma) = \frac{1}{4} \log \sigma$$

The design space of diffusion models

The design space of diffusion models

Training

- Prefixed noise schedule
- Training noise sampling schedule
- Loss weighting w.r.t. time

Model

- Reparameterization
- Input/Output scaling
- How to do time conditioning

Sampling

- Solver
- Sampling time noise schedule
- Number of time steps

Next class we will learn how to turn an unconditional diffusion model into a conditional one

Spoiler alert: You may or may not need to train for it!

