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Lecture 6: The Design
Space of Diffusion Models
& Solvers for Fast Sampling
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Housekeeping Announcements

« Homework 2 is out! https://kellyyutonghe.github.io/10799526/homework/
* Due date: 2/3 Tue, Late Due date: 2/5 Thur
* Training models takes time! Start early!
* Maybe change in due date? Vote in Discord!

* Quiz 3 next class!
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https://kellyyutonghe.github.io/10799S26/homework/

Now that we have learned the basics

Is DDPM perfect now? What can we improve?
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Us defending our DDPM model from HW1 be like...
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Vanilla DDPM is slooooooooow

« Take 1000 steps to generate an image

« Theimage quality severely degrades if you use fewer steps

« Scaling to higher resolution/larger model size becomes nightmare
=>

« Any application that needs real time generation &

« Video is going to be a big pain 0

+ GPUcost Q2 .
arnegie

Mellon
University



Currently, the DDPM sampling is like

Timet : Xt—1 &
/nmse’.V
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d\lo, you canitfThere mustb

be anotherway.

But there is another way!

We know x, = /@;xy + /1 — @€, and our model

predicts eg(xs, t) = €, then

Xojt ® = (%t =/ 1 = areq(xy, t))

And

Xe—1 = /A1 Xo)t + /1 — Ar_169(x¢, )
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So we can also do sampling like this

Time t

predicted

bredicted

t—1

t—2
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L] [ ] 1
Now what if we skip t-1 Roje ~ N — 1= aep(x,, 1))
t

And

Xe_p R Qe Xoe ¥4/ 1 — Ar_2€9(X¢, T)

predicted
noise
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We can skip more than 1 step! 10X
speedup!

Time 0 .
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Notice how right now everything is deterministic

Time 0 :
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But we can add the stochasticity back!

We know x, = /@;xy + /1 — @€, and our model

predicts eg(xs, t) = €, then

1
Xoie ® —(x¢ —/ 1 — areg (x4, t))
0% ey

And

predicted
noise

Xt—1 = C_{t—1£0|t + \/1 — (Yt_l - O-tZEQ(xt, t) + (VA
for constant ¢, and z~N (0, 1)
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Putting everything together ~ NOw you have

DDIM!

Timet

t —10
T~
71:\_{) predicted \

noise . seesee
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DDIM: The OG diffusion fast sampling algorithm

(t)
T — V1 — o€y’ (T
mtlz,/atl( ¢ \/a_{i [ ( t)) +\/1—Oﬂt71—0't2-6§t)(mt)+ o€
t ~ —~

~ vy

-

random noise

-~
-~ “direction pointing to @;”
“ predicted o™

The pseudocode of the deterministic version of DDIM (also in HW2)

Algorithm 1 DDIM Sampling

Require: trained noise predictor €y, number of steps S, noise schedules &
1: Sample z7 ~ N(0, 1)
2: Create timestep subsequence [7s,7s-1,...,71] from [T),...,1] > e.g., [1000, 900, 800, ...]
3 fori=5,5-1,..,1do

4: t< T;

5: bprev ¢ Ti—1 (OI' 0ifi= 1)

6: € + ep(x4, t) > Predict noise using your trained DDPM
7: To ‘"77‘/\/? > Predict clean image
8: Ttprey = \/QUtprey " To + /T — Qe - € > DDIM step
9: end for

10: return z

|

Jiaming Song, Chenlin Meng, Stefano Ermon. “Denoising Diffusion Implicit Models”. ICLR 2021. https://arxiv.org/pdf/2010.02502
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https://arxiv.org/pdf/2010.02502

Any other ways to sample?
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Remember how everything can be ODE now

Cond-OT flow matching: Probability flow ODE:

Po =N(0,1),p; = 8(x1) dx = [£(x,1) - %g(t)2vx log ()] dt,

Xy = txg + (1 — t)xo, Xo~Po

Pe(xe|x1) = N(txy, (1 = )?1)

dx, We can use different

— = U\ X[ X)) — X1 — X
7 = wlxelx) = x - %

solvers to solve the ODEs!
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Classic ODE solver 1 - Euler solver
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o \ xl
V?(Xt;\)A .
Time 0 ¢ t 4+ At Time 1
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Classic ODE solver 2 - Midpoint solver

18

X0 X1
( 42 At)
Vg X, 1, ., —
o~ °
Vo (Erxt: t) T :
Time O ¢ t+lAt t 4+ At Time 1
2
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Classic ODE solver 3 - 2nd order Heun solver
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o \ X1
o
!9( tt) : ,
Vg (X¢tat, t + At)
Time O ¢ t 4+ At Time 1
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Diffusion specific solver - DPM solver

The diffusion ODE is

do't2 dlog o dlog o dlog o d)
) =dlogaan o= sy (demndemn)
I
Y,
t 2
_ JEf(r)dr It fryar9-(7)
e :c3—|—/3 (6 20, €o(er,7) ) dr- Carnegie
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Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurlPS 2022. https://arxiv.org/pdf/2206.00927


https://arxiv.org/pdf/2206.00927
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Diffusion specific solver - DPM solver

A,
at@ _ * —\ A A
From here Ty = Ty — O‘t@/ e ég(2x, N)dA.
ti 1 D
We can channel Taylor expansion
k—1
~ A (A o Atz— )n A A k
eo(@x,N) =Y el (@, M) + O = A, ,)R),
0 n.
Il
\%
k—1 At
o, . (1), ~ B (A=A )"
Lt 1—t; = . L, — O, Z Eé )(m)‘tiliAtil) € A( ?’; 1) d’\+0(hf+1):
ti—1 n=0 Aty )
\ Y ' Carnegie
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Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurlPS 2022. https://arxiv.org/pdf/2206.00927


https://arxiv.org/pdf/2206.00927
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Diffusion specific solver - DPM solver

Qt; - <« 2(n) ¢ 4 A A=A )" k+1
Lt 1—t; = Li; 1 — O, Z €o (m)‘ti_l y At 1) € | dA+O(h; ™),
Atia n=0 At;_q n:
\ J
— I
Can be estimated lgnored
Can be calculated analytically
Finally we get for k=1
~ o, .
Ty, = Ty, , —op (e — 1)eg(@e, 1, ti-1)
ti_1
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Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurlPS 2022. https://arxiv.org/pdf/2206.00927


https://arxiv.org/pdf/2206.00927
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Solver comparison

100.0
—*— DPM-Solver —*— ODE (DPM-Solver)

—+— DDPM —— ODE (RK45)
—— DDIM —s«— SDE (Euler)
—»— SDE (Adaptive)

100

50

NFE NFE
(e) ImageNet 128x128 (discrete) (a) CIFAR-10 (continuous)
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Lu et al. “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”. NeurlPS 2022. https://arxiv.org/pdf/2206.00927


https://arxiv.org/pdf/2206.00927
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Solver comparison (from Claude)

Simple « > Optimized
Fast/step Fast/quality

Euler Midpoint Heun DPM-Solver

1 NFE/step 2 NFE/step 2 NFE/step 1-2 NFE/step

1st order 2nd order 2nd order 1st-3rd order
50-100 steps 25-50 steps 25-50 steps 10-25 steps

| |
| | |

Generic ODE Generic ODE Diffusion-specific
solvers solvers solver
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Besides sampling, any other ways to improve DDPM?

Carnegie
Mellon
University




26

Actually there is a paper that studied them all

EDM: What are the actual independent design choices of diffusion models and let’s

disentangle them as study them one by one

Elucidating the Design Space of Diffusion-Based
Generative Models

Tero Karras Miika Aittala Timo Aila Samuli Laine
NVIDIA NVIDIA NVIDIA NVIDIA
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The design space of diffusion models
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E—

« Prefixed noise schedule

Training

« Training noise sampling

.~

The design space of diffusion models

-

« Reparameterization

Model

« Input/Output scaling

~

N

/ Sampling
. Solver

« Sampling time noise

schedule .« How to do time schedule
« Loss weighting w.r.t. time conditioning * Number of time steps
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SNR = Signal/Noise 28
Signal-to-noise ratio (SNR) a?

Noise x
t=T

casy eaSy\‘ /
. , All noise,
No noise, / Some noise,

no signal

2l signal Some Signal\ Hard!!! Carnegie
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SNR Attempt 1: Linear scheduler -> Cosine scheduler

Linear vs Cosine Noise Schedule (T=1000)

Noise Rate B; Cumulative Signal a; Signal-to-Noise Ratio
1091 — Linear 1.0 40 —— Linear
—— Cosine 20 —— Cosine
0.8 0.8 A
0
0.6 0.6 8 _y
L & 2
0.4 0.4 2 -40
-60
0.2 1 0.29
-80
00 L T T T T T T OD 1 T T T T T T _100 T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 o] 200 400 600 800 1000
Timestep t Timestep t Timestep t

Forward Noising: Linear vs Cosine Schedule
t=250
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Nichol & Dhariwal. “lmproved Denoising Diffusion Probabilistic Models”. ICML 2021. https://arxiv.org/pdf/2206.00927


https://arxiv.org/pdf/2206.00927
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SNR Attempt 1.5: You can even learn your schedule

SNR(t) schedule Var(BPD)

N E::;:i)_linear Learned (ours) 0.53

—— beta-linear [1] log SNR-linear 6.35

s —— alpha-cosine [2] ﬁ-Linear [1] 31.6
0.0 02 04 06 08 10 a-Cosine [2] 31.1
(a) log SNR vs time ¢ (b) Variance of VLB estimate
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Kingma et al. “Variational Diffusion Models”. NeurIPS 2021. https://arxiv.org/pdf/2107.00630



https://arxiv.org/pdf/2107.00630

|

SNR Attempt 2: At sampling time, you can also spend
more time on the more difficult noise levels!

: 1 1
+ Jy'.gg_l(‘:"xllinp _O'maxp))p and oy =0.

o=

Oi<N = (Umax

SNR Attempt 3: You should parameterize your model
to take the actual noise level (o or logo) instead of
timesteps!

Scheduler invariant parameterization

Continuous => Easier to do make inference time changes (fewer/more steps)

Better numerical scaling

Mellon

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364
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https://arxiv.org/pdf/2206.00364
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SNR Attempt 4: Train on harder time steps more

Just sampling the more difficult time steps to more frequently during training time!

loss
1.4

1.2
1.0
0.8
0.6
0.4
0.2
0.0

— Loss after init — CIFAR-10
- - Distribution of & FFHQ-64

0=0.005 0.02 01 051 2 5 1020 50

|

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364
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https://arxiv.org/pdf/2206.00364
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SNR Attempt 5: Weight different timestep differently
according to their SNR

The gradient

loss .

L 4| | — Loss after init ~ — CIFAR-10 scale varies a lot

' - - Distribution of ¢ — FFHQ-64 — _

1.2 depending on
1.0

the SNR
0.8
0.6 ]
0.4 v
0.2 Apply a weighting scalar
0.0 .
to balance it out!

0=0.005 0.02 01 051 2 5 1020 50
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Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364


https://arxiv.org/pdf/2206.00364

SNR Attempt 6: Reparameterization

Data x, X0.25T Xo 5T Xo 75T Noise xp

34

t=0 t = 0.25T t =05T t =0.75T t=T
Predict clean signal (x¢ g (x;, t)): Predict noise (ey(x;, t)):
« Easy atlow noise (high SNR) « Easy at high noise (low SNR)
» Hard at high noise (low SNR) « Hard at low noise (high SNR)
Something in between? Carnegie
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SNR Attempt 6: Reparameterization

Data x, X0.25T Xo 5T Xo 75T Noise xp
t=20 t = 0.25T t =0.5T t =0.75T t=T

Predict clean signal (xq¢(x,, t)): Predict interpolation Predict noise (ey(x;, t)):

(a.k.a velocity vg(x;, t)):

« Easy atlow noise (high SNR) Easy at high noise (low SNR)

- Hard at high noise (low SNR) ~ ° Good balance! « Hard at low noise (high SNR)
CU T e T o Carnegie
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Salimans & Ho. “Progressive Distillation for Fast Sampling of Diffusion Models”. ICLR 2022. https://arxiv.org/pdf/2202.00512


https://arxiv.org/pdf/2202.00512
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Another way to do network parameterization?

Remember how previously we want to do v-prediction as our target

V= 0€ — 0tX) o A mixture of noise

Now notice how x; is also a mixture of noise and clean data and clean data
= The network should reuse some information in x;

— Skip connection!
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Input/Output scaling & Precondit‘iw, Rescale input

DG(m;J) — Cskip(o-) x + Cout(o-) F9 'n(U) I, Cnoise(o')as/

AN T~

Predicts clean data xO  Skip connection weight Network output weight Trained network

Time/noise

conditioning

« Whent - 0,0 — 0=>inputis mostly clean => can directly pass through more

« Whent - 1, 0 » oo =>inputis mostly noise => should ignore most of the input

and rely on the network prediction more
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Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364



https://arxiv.org/pdf/2206.00364
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Input/Output scaling & Precondit‘iw, Rescale input

Dy(x;0) = cskip(0) T + cour(0) Folcin(o) ; Cnoise(UB,/ Time/noise

\ \ conditioning

Predicts clean data xO  Skip connection weight Network output weight Trained network

We also want:

« The network input to have unit variance
« Training target to have unit variance

« Reuse information in input as much as possible

2

g o0
=> CSkip(U) = azf;tza ' Cout(o_) = —daa Cm(O') = Cnmse(U) = —loga
data Jo*+0%ata ,/0 +08ata Carnegle
Mellon
- University

Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. NeurlPS 2022. https://arxiv.org/pdf/2206.00364


https://arxiv.org/pdf/2206.00364
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The design space of diffusion models

/ The design space of diffusion models \
/ Training \ / Model \ / Sampling \

« Prefixed noise schedule - Reparameterization « Solver
« Training noise sampling * Input/Output scaling « Sampling time noise

schedule S Mamnits do (e schedule
« Loss weighting w.r.t. tinlconditioning « Number of time steps
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Next class we will learn how to turn an
unconditional diffusion model into a conditional one

Spoiler alert: You may or may not need to train for it!

SPOILERS ARE COMING

makeameme .org Carnegie
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Image from http://makeameme.org/meme/spoilers-are-coming
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