
Lecture 5:
Flow Matching

Yutong (Kelly) He

10-799 Diffusion & Flow Matching, Jan 22nd, 2026 

Many figures derived from Yang Song’s https://yang-song.net/blog/2021/score/ 
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Quiz time!

10 minutes

Closed-book

Pen & Paper

If you don’t want to stay for the 

lecture, feel free to leave after 

submitting your quiz!
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Housekeeping Announcements

• Homework 1 is out! https://kellyyutonghe.github.io/10799S26/homework/

• Q6 (Alternative Parameterization) is now an optional extra credit question!

• Due date: 1/24 Sat, Late Due date: 1/26 Mon

• Training models takes time! Start early!

• Office Hours are announced:

• Kelly is hosting OH 

• In-person: Wednesdays 1:00 PM - 2:00 PM, Gates 8th Floor common 
area near the printer

• Virtual: Fridays 11:00 AM - 12:00 PM, Discord

• Krish is hosting OH Tuesdays 4:00 PM - 5:00 PM, Gates 8th Floor common 
area near the printer

• Extra OH this week: Friday 3 – 4 PM same location

https://kellyyutonghe.github.io/10799S26/homework/
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Diffusion’s way to turn noise into data

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 = 4 = 𝑇

Forward process
(adding noise)

Reserve process
(denoising)

Cat stolen from Chieh-Hsin (Jesse) Lai
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Score-based model’s way to turn noise into data

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Hold up, wait a minute, doesn’t this look 
familiar?

Diffusion

(DDPM)

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 =

Score-based 
model

(NCSN)
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When the number of noise scales goes to infinity

It becomes a continuous-time stochastic process, many of which can be solved by 

stochastic differential equations (SDEs)

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Score SDE: Reverse Process w/ infinite noise scales

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG12RRHS 

Brian D.O. Anderson. “Reverse-time diffusion equation models”. Stochastic Processes and their Applications 1982.

https://openreview.net/pdf?id=PxTIG12RRHS
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Is there an even simpler way to do the same thing?

Image from Harry Potter
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Let’s say we are given a data point, what would be 
the simplest way to construct a trajectory from 
noise to this data point?

?
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How about let’s just do linear interpolation?

Image from PPAP
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How about let’s just do linear interpolation?

25% data

75% noise

50% data 75% data

50% noise 25% noisesame noise

same data 

point
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13Then learning the transformations along this 
trajectory is also easy

0.25 data

0.75 noise

0.5 data

0.5 noise

𝑥0 𝑥0.25 𝑥0.5 𝑥0.75 𝑥1

𝑥0.5 = 𝑥0.25 + 0.25 𝑑𝑎𝑡𝑎 − 0.25 𝑛𝑜𝑖𝑠𝑒
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14Then learning the transformations along this 
trajectory is also easy

0.25 data

0.75 noise

0.5 data

0.5 noise

𝑥0 𝑥0.25 𝑥0.5 𝑥0.75 𝑥1

𝑥0.5 = 𝑥0.25 + 0.25 (𝑥1 − 𝑥0)
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15Then learning the transformations along this 
trajectory is also easy

0.25 data

0.75 noise

0.5 data

0.5 noise

𝑥0 𝑥0.25 𝑥0.5 𝑥0.75 𝑥1

𝑥𝑡+Δ𝑡 = 𝑥𝑡 + Δ𝑡 (𝑥1 − 𝑥0)

Δ𝑡 → 0,
𝑑𝑥

𝑑𝑡
= 𝑥1 − 𝑥0

velocity

This is literally the thing we 
want to learn
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Training:

1. Sample noise 𝑥0~𝑁(0, 𝐼)

2. Sample data 𝑥0~𝑝𝑑𝑎𝑡𝑎

3. Uniformly sample time step 𝑡~𝑈(0,1)

4. Compute noisy sample 𝑥𝑡 = 𝑡𝑥1 + 1 − 𝑡 𝑥0

5. Compute velocity 𝑣 = 𝑥1 − 𝑥0

6. Learn to predict the velocity

𝐿 𝜃 = 𝐸[ 𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑣 ^2]

Learning to transform noise ”straight” into data

Now you have flow matching!

Sampling:

Using step size Δ𝑡, starting from 𝑡 = 0

1. Sample noise 𝑥0~𝑁 0, 𝐼

2. While 𝑡 < 1, do

1) Δ𝑥 = 𝑣𝜃(𝑥𝑡 , 𝑡)Δ𝑡

2) 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + Δ𝑥

3) 𝑡 = 𝑡 + Δ𝑡

3. Output 𝑥1
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Why is this a proper probabilistic generative model?
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To understand this, we need to go back in time
(pun intended)

GIF from Star Trek
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Continuous normalizing flows

A CNF is a generative model that transports data from an initial distribution (denoted 

as 𝑝0) to a target distribution (denoted as 𝑝1) by integrating an ODE.

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡 , 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣 𝑥𝜏, 𝜏 𝑑𝜏 

velocity

sampling

Chen et al. Neural Ordinary Differential Equations. NeurIPS 2018. https://arxiv.org/abs/1806.07366 

https://arxiv.org/abs/1806.07366
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𝑥0 𝑥0.25 𝑥0.5 𝑥0.75 𝑥1

Δ𝑡 → 0,
𝑑𝑥

𝑑𝑡
= 𝑣(𝑥𝑡 , 𝑡)

velocity

Basically this but with generalized velocities

Sampling (Numerically solving of the ODE):

Using step size Δ𝑡, starting from 𝑡 = 0

1. Sample noise 𝑥0~𝑁 0, 𝐼

2. While 𝑡 < 1, do: Δ𝑥 = 𝑣𝜃 𝑥𝑡 , 𝑡 Δ𝑡, 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + Δ𝑥, 𝑡 = 𝑡 + Δ𝑡

3. Output 𝑥1
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21Think of it as the wind flow transports water vapor 
(humidity) from the west coast to the east coast

Image from https://www.snow-forecast.com/maps/static/usa/6/wind

https://www.snow-forecast.com/maps/static/usa/6/wind
https://www.snow-forecast.com/maps/static/usa/6/wind
https://www.snow-forecast.com/maps/static/usa/6/wind
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Why is this a normalizing flow

The streams never cross!
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Why is this a normalizing flow

Because the streams never cross, following the ODE flow is an invertible transformation!

Normalizing flows: 
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How does this connect to probability

In order for a CNF to model transports between probability distributions, we need the 

following assumptions:

• Conservation of mass: No new mass and mass does not disappear 

   => Probability always adds up to 1

• Continuity equation: Not only that the mass is conserved, it also does not teleport

   => Probability can only move/change continuously
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Probability flux & divergence

Flux: the amount of flow per unit time through a unit space

=> Probability flux = velocity x density

where and how fast it flows
how much 

probability it flows
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Probability flux & divergence

Video generation by Veo
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Probability flux & divergence

Flux: the amount of flow per unit time through a unit space

=> Probability flux = velocity x density

The two assumptions can be formally written in math in this way:

𝜕𝑝𝑡

𝜕𝑡
= −div 𝑝𝑡 𝑥𝑡 𝑣 𝑥𝑡 , 𝑡 = ෍

𝑑

𝜕𝑣 𝑥𝑡 , 𝑡

𝜕𝑥𝑡
(𝑑)

where and how fast it flows
how much 

probability it flows

Divergence: how much probability that outflows 

from a given point per unit time in every direction
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Instantaneous change of variables (Chen et al. 2018)

𝜕𝑝𝑡

𝜕𝑡
= −div (𝑝𝑡(𝑥𝑡)𝑣 𝑥𝑡 , 𝑡 )

1

𝑝𝑡(𝑥𝑡)

𝜕𝑝𝑡

𝜕𝑡
= −

1

𝑝𝑡(𝑥𝑡)
div(𝑝𝑡(𝑥𝑡)𝑣 𝑥𝑡 , 𝑡 )

𝜕 log 𝑝𝑡

𝜕𝑡
= −

1

𝑝𝑡 𝑥𝑡
(< ∇𝑥𝑡

𝑝𝑡 , 𝑣 > +𝑝𝑡div(𝑣 𝑥𝑡 , 𝑡 ))

          = − (< ∇𝑥𝑡
log 𝑝𝑡 , 𝑣 > +div(𝑣 𝑥𝑡 , 𝑡 ))

          = − (< ∇𝑥𝑡
log 𝑝𝑡 , 𝜕𝑡𝑥𝑡 > +div(𝑣 𝑥𝑡 , 𝑡 ))

𝑑 log 𝑝𝑡

𝑑𝑡
=

𝜕 log 𝑝𝑡

𝜕𝑡
+ < ∇𝑥𝑡

log 𝑝𝑡 , 𝜕𝑡𝑥𝑡 >

𝑑 log 𝑝𝑡

𝑑𝑡
= −div(𝑣 𝑥𝑡, 𝑡 )

Chen et al. Neural Ordinary Differential Equations. NeurIPS 2018. https://arxiv.org/abs/1806.07366 

https://arxiv.org/abs/1806.07366
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How CNF based models calculate likelihood

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡, 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣 𝑥𝜏, 𝜏 𝑑𝜏 

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣 𝑥𝑡, 𝑡

log 𝑝𝑡 (𝑥𝑡) = log 𝑝0( 𝑥0) − න
0

𝑡

div 𝑣 𝑥𝜏, 𝜏 𝑑𝜏
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How to train your CNF models

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡, 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣 𝑥𝜏, 𝜏 𝑑𝜏 

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣 𝑥𝑡, 𝑡

log 𝑝𝑡 (𝑥𝑡) = log 𝑝0( 𝑥0) − න
0

𝑡

div 𝑣 𝑥𝜏, 𝜏 𝑑𝜏
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Attempt 1: Maximum likelihood

𝑑𝑥𝑡

𝑑𝑡
= 𝑣𝜃(𝑥𝑡 , 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏 

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣𝜃 𝑥𝑡 , 𝑡

log 𝑝𝑡 (𝑥𝑡; 𝜃) = log 𝑝0( 𝑥0) − න
0

𝑡

div 𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏

=> argmax𝜃 log 𝑝1 (𝑥1; 𝜃)

log 𝑝1 (𝑥1; 𝜃) = log 𝑝0( 𝑥0) − න
0

1

𝑑𝑖𝑣 𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏

Need numerical 

integration at training time
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Attempt 2: Flow matching

𝑑𝑥𝑡

𝑑𝑡
= 𝑣𝜃(𝑥𝑡 , 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏 

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣𝜃 𝑥𝑡 , 𝑡

log 𝑝𝑡 (𝑥𝑡; 𝜃) = log 𝑝0( 𝑥0) − න
0

𝑡

div 𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏

=> Just need to make sure 𝑣𝜃 match with the ground truth velocity

=> 𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑢 𝑥𝑡, 𝑡
2

Both depend on the 

same velocity field

Ground truth velocity
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But we don’t have the ground truth velocity
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What if we fix a point to transport

Poseidon generation by nano banana, Goku Kamehameha from https://www.reddit.com/r/dbz/comments/2ggs8j/goku_kamehameha_wallpaper/

https://www.reddit.com/r/dbz/comments/2ggs8j/goku_kamehameha_wallpaper/
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Conditional probability path => Marginal probability path

Given a data point 𝑥1, it’s usually to define a conditional velocity field 𝑢𝑡(𝑥𝑡|𝑥1)

Then we call the trajectory of the probability distribution generated along the way 

the conditional probability path 𝑝𝑡(𝑥𝑡|𝑥1)

Here the conditional probability path starts from the prior 𝑝0 𝑥 𝑥1 = 𝑝0(𝑥), and 

always end up at 𝑥1 or a small Gaussian concentrated around 𝑥1, i.e. 𝑝1 𝑥 𝑥1 = 𝛿(𝑥1), 

or 𝑝1 𝑥 𝑥1 = 𝑁(𝑥1, 𝜎2𝐼) with small 𝜎

Then then marginal probability path is

𝑝𝑡 𝑥𝑡 = ∫ 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1

𝑝1 𝑥 = ∫ 𝑝1 𝑥 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1 ≈ 𝑝𝑑𝑎𝑡𝑎 𝑥

Lipman et al. Flow Matching for Generative Modeling. ICLR 2023. https://arxiv.org/pdf/2210.02747

https://arxiv.org/pdf/2210.02747
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Conditional velocity => Marginal velocity

With a conditional velocity 𝑢𝑡(𝑥𝑡|𝑥1), we can also define a marginal velocity

𝑢𝑡 𝑥𝑡 = ∫ 𝑢𝑡 𝑥𝑡 𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
𝑑𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
 : Pseudo “Bayes theorem”

• 𝑝𝑡 𝑥𝑡 𝑥1  : how likely is current intermediate sample along the conditional probability path

• 𝑝𝑑𝑎𝑡𝑎 𝑥1 : how likely is the data point that defines the conditional probability path

• 𝑝𝑡 𝑥𝑡  : how likely is the current intermediate sample in general (normalization)
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Conditional velocity => Marginal velocity

With a conditional velocity 𝑢𝑡(𝑥𝑡|𝑥1), we can also define a marginal velocity

𝑢𝑡 𝑥𝑡 = ∫ 𝑢𝑡 𝑥𝑡 𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
𝑑𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
 : Pseudo “Bayes theorem”, sort of 𝑝𝑡 𝑥1 𝑥𝑡

𝑢𝑡 𝑥𝑡 = 𝐸𝑥1~𝑝𝑡 𝑥1 𝑥𝑡
[𝑢𝑡 𝑥𝑡 𝑥1 ]

Intuitively, it’s basically the average conditional velocity at location 𝑥𝑡 time 𝑡, weighted by 

how likely the data point is for the current location and time
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Marginal velocity generates marginal probability path

𝜕

𝜕𝑡
𝑝𝑡 𝑥𝑡 =

𝜕

𝜕𝑡
∫ 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1

= ∫ (
𝜕

𝜕𝑡
𝑝𝑡 𝑥𝑡 𝑥1 )𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1

= ∫ − div(𝑝𝑡 𝑥𝑡 𝑥1 𝑢𝑡 𝑥𝑡|𝑥1 )𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1

= −div(∫ 𝑢𝑡 𝑥𝑡|𝑥1 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1)

= −div(𝑢𝑡 𝑥𝑡 𝑝𝑡(𝑥𝑡))

𝑝𝑡 𝑥𝑡 = ∫ 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1 𝑢𝑡 𝑥𝑡 = ∫ 𝑢𝑡 𝑥𝑡 𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
𝑑𝑥1

𝜕𝑝𝑡

𝜕𝑡
= −div(𝑝𝑡𝑣𝑡)
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Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡)[ 𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑢𝑡 𝑥𝑡
2

]

= 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑢𝑡 𝑥𝑡
2

+ 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[ 𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑢𝑡 𝑥𝑡|𝑥1
2

]

= 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑢𝑡 𝑥𝑡|𝑥1
2

+ 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

Constant w.r.t. 𝜃
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Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]
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Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

𝐸𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

= ∫ ∫ 𝑣𝜃 𝑥𝑡 , 𝑡
2
 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥𝑡𝑑𝑥1

= ∫ 𝑣𝜃 𝑥𝑡 , 𝑡
2

𝑝𝑡 𝑥𝑡 𝑑𝑥𝑡 = 𝐸𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2
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Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1, 𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

𝐸𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 = ∫ 𝑣𝜃 𝑥𝑡 , 𝑡 , ∫ 𝑢𝑡 𝑥𝑡 𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
𝑑𝑥1 𝑝𝑡(𝑥𝑡)𝑑𝑥𝑡

= ∫ 𝑣𝜃 𝑥𝑡 , 𝑡 , ∫ 𝑢𝑡 𝑥𝑡 𝑥1 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1 𝑑𝑥𝑡

= ∫ 𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 𝑥1 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1𝑑𝑥𝑡

= 𝐸𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]
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Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

 argmin𝜃𝐿𝐹𝑀 𝜃 = argmin𝜃𝐿𝐶𝐹𝑀 𝜃

We just need to match the conditional velocity

𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑢𝑡 𝑥𝑡|𝑥1
2
 !!!
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transform a Gaussian straight to a single point with 
constant speed

𝑝0 = 𝑁 0, 𝐼 , 𝑝1 = 𝛿(𝑥1)

𝑥𝑡 = 𝑡𝑥1 + 1 − 𝑡 𝑥0,  𝑥0~𝑝0

𝑝𝑡(𝑥𝑡|𝑥1) = 𝑁(𝑡𝑥1, 1 − 𝑡 2𝐼)

𝑑𝑥𝑡

𝑑𝑡
= 𝑢 𝑥𝑡 𝑥1 = 𝑥1 − 𝑥0

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝0(𝑥0)[ 𝑣𝜃 𝑥𝑡 , 𝑡 − (𝑥1 − 𝑥0)
2

]

Image from https://alechelbling.com/blog/rectified-flow/

https://alechelbling.com/blog/rectified-flow/
https://alechelbling.com/blog/rectified-flow/
https://alechelbling.com/blog/rectified-flow/
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Cond-OT flow matching

Geng et al. “Mean Flows for One-step Generative Modeling”. NeurIPS 2025. https://arxiv.org/pdf/2505.13447

https://arxiv.org/pdf/2505.13447
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Cond-OT flow matching a.k.a Rectified flow a.k.a A 
special case of stochastic interpolant

Three different groups of people develop the same algorithm from different 

theoretical perspective at the same time!

• Lipman et al. “Flow matching for generative modeling”. ICLR 2023. 

https://arxiv.org/pdf/2210.02747 

• Liu & Gong. “Flow Straight and Fast: Learning to Generate and Transfer Data with 

Rectified Flow”. ICLR 2023. https://arxiv.org/pdf/2209.03003

• Albergo & Vanden-Eijnden. “Building Normalizing Flows with Stochastic 

Interpolants”. ICLR 2023. https://arxiv.org/pdf/2209.15571

https://arxiv.org/pdf/2210.02747
https://arxiv.org/pdf/2209.03003
https://arxiv.org/pdf/2209.15571
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Hmm but the marginal flows are not the straightest

Geng et al. “Mean Flows for One-step Generative Modeling”. NeurIPS 2025. https://arxiv.org/pdf/2505.13447

https://arxiv.org/pdf/2505.13447
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Reflow: Flow matching on the flow matched pairs

Liu & Gong. “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”. ICLR 2023. https://arxiv.org/pdf/2209.03003

https://arxiv.org/pdf/2209.03003
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Diffusion v.s. Flow matching

• Diffusion is like wandering in the woods with a compass

• Flow matching is like sitting on a boat in a river
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So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE), 

normalizing flow, energy-based models (EBM), diffusion models

• Likelihood Free: Generative adversarial networks (GAN), score-based models, 

flow matching

Directly sampling from P(X) is usually hard because they are usually complicated! But 

sampling from a simpler distribution (eg. a Gaussian) is easy!

Same 

thing!
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So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE), 

normalizing flow, energy-based models (EBM), diffusion models

• Likelihood Free: Generative adversarial networks (GAN), score-based models, 

flow matching

Directly sampling from P(X) is usually hard because they are usually complicated! But 

sampling from a simpler distribution (eg. a Gaussian) is easy!

Same 

thing?
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Diffusion path flow matching == diffusion

Cond-OT path:

𝑝0 = 𝑁 0, 𝐼 , 𝑝1 = 𝛿(𝑥1)

𝑥𝑡 = 𝑡𝑥1 + 1 − 𝑡 𝑥0,  𝑥0~𝑝0

𝑝𝑡(𝑥𝑡|𝑥1) = 𝑁(𝑡𝑥1, 1 − 𝑡 2𝐼)

𝑑𝑥𝑡

𝑑𝑡
= 𝑢 𝑥𝑡 𝑥1 = 𝑥1 − 𝑥0

VE diffusion path:

𝑝0 = 𝑁 0, 𝐼 , 𝑝1 = 𝛿(𝑥1)

𝑥𝑡 = 𝑥1 + 𝜎1−𝑡𝜖𝑡 ,  𝜖𝑡~𝑁 0, 𝐼

𝑝𝑡(𝑥𝑡|𝑥1) = 𝑁(𝑥1, 𝜎1−𝑡
2𝐼)

𝑑𝑥𝑡

𝑑𝑡
= 𝑢 𝑥𝑡 𝑥1 = −

𝜎1−𝑡
′

𝜎1−𝑡
(𝑥𝑡 − 𝑥1)
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How about Score SDE => Flow ODE?

Velocity?

Need to take care of the 

probability induced by this part!
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Probability flow ODE:

 Continuity equation: 

𝜕𝑡𝑝𝑡 𝑥 = −div 𝑣𝑡 𝑥 𝑝𝑡 𝑥

= −div 𝑓 𝑥, 𝑡 𝑝𝑡 𝑥 +
1

2
𝑔 𝑡 2div 𝑝𝑡 𝑥 ∇𝑥 log 𝑝𝑡(𝑥)

= −div 𝑓 𝑥, 𝑡 𝑝𝑡 𝑥 +
1

2
𝑔 𝑡 2div ∇𝑥𝑝𝑡(𝑥)

= −div 𝑓 𝑥, 𝑡 𝑝𝑡 𝑥 +
1

2
𝑔 𝑡 2Δ𝑥𝑝𝑡(𝑥)

Score SDE => Flow ODE via Fokker–Planck PDE

Reverse Score SDE:

 Forward SDE:

𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

Fokker–Planck PDE of the forward SDE:

 𝜕𝑡𝑝𝑡 𝑥 = −div 𝑓 𝑥, 𝑡 𝑝𝑡 𝑥 +
1

2
𝑔 𝑡 2Δ𝑥𝑝𝑡(𝑥)

Same PDE for 𝜕𝑡𝑝𝑡 𝑥  <=> Marginals 𝑝𝑡 𝑥  are the same!

You can sample with 

this ODE now!
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Density estimation with flow matching

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡, 𝑡)

ෝ𝑥𝑡 = 𝑥1 − න
𝑡

1

𝑣 ො𝑥𝜏, 𝜏 𝑑𝜏 

𝑑 log 𝑝𝑡

𝑑𝑡
= −𝑑𝑖𝑣 𝑣 𝑥𝑡 , 𝑡

log 𝑝1 (𝑥1) = log 𝑝0( ො𝑥0) − න
0

1

𝑑𝑖𝑣 𝑣 ො𝑥𝜏, 𝜏 𝑑𝜏
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Density estimation with diffusion Attempt 1: ELBO

log 𝑝𝜃(𝑥0) = log ∫ 𝑝𝜃 𝑥0:𝑇 𝑑𝑥1:𝑇

= log ∫ 𝑞(𝑥1:𝑇|𝑥0)
𝑝𝜃 𝑥0:𝑇

𝑞(𝑥1:𝑇|𝑥0)
𝑑𝑥1:𝑇

= log 𝐸𝑞 𝑥1:𝑇 𝑥0
[

𝑝𝜃 𝑥0:𝑇

𝑞 𝑥1:𝑇 𝑥0
]

≥ 𝐸𝑞 𝑥1:𝑇 𝑥0
[log

𝑝𝜃 𝑥0:𝑇

𝑞 𝑥1:𝑇 𝑥0
]

=> Just use the loss function as an estimation of the density
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Density estimation with diffusion Attempt 2: PF ODE

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡, 𝑡)

ෝ𝑥𝑡 = 𝑥1 − න
𝑡

1

𝑣 ො𝑥𝜏, 𝜏 𝑑𝜏 

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣 𝑥𝑡 , 𝑡

log 𝑝1 (𝑥1) = log 𝑝0( ො𝑥0) − න
0

1

div 𝑣 ො𝑥𝜏, 𝜏 𝑑𝜏
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So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE), 

normalizing flow, energy-based models (EBM), diffusion models

• Likelihood Free: Generative adversarial networks (GAN), score-based models, 

flow matching

Directly sampling from P(X) is usually hard because they are usually complicated! But 

sampling from a simpler distribution (eg. a Gaussian) is easy!

Same 

thing!
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We have gone through all the basics! 

Starting from next week, we will be exploring different options to improve diffusion 

and flow matching models

• The design space of diffusion models (i.e. what knobs can we tune to make the 

models better)

• How to make generation faster (through training and with no additional training)

• How to make the generation more controllable (through training and with no 

additional training)
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