
Lecture 5:
Flow Matching

Yutong (Kelly) He

10-799 Diffusion & Flow Matching, Jan 22nd, 2026

Many figures derived from Yang Song’s https://yang-song.net/blog/2021/score/

2
2
2

2

Quiz time!

10 minutes

Closed-book

Pen & Paper

If you don’t want to stay for the

lecture, feel free to leave after

submitting your quiz!

3
3
3

3

Housekeeping Announcements

• Homework 1 is out! https://kellyyutonghe.github.io/10799S26/homework/

• Q6 (Alternative Parameterization) is now an optional extra credit question!

• Due date: 1/24 Sat, Late Due date: 1/26 Mon

• Training models takes time! Start early!

• Office Hours are announced:

• Kelly is hosting OH

• In-person: Wednesdays 1:00 PM - 2:00 PM, Gates 8th Floor common
area near the printer

• Virtual: Fridays 11:00 AM - 12:00 PM, Discord

• Krish is hosting OH Tuesdays 4:00 PM - 5:00 PM, Gates 8th Floor common
area near the printer

• Extra OH this week: Friday 3 – 4 PM same location

https://kellyyutonghe.github.io/10799S26/homework/

4
4
4

4

Diffusion’s way to turn noise into data

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 = 4 = 𝑇

Forward process
(adding noise)

Reserve process
(denoising)

Cat stolen from Chieh-Hsin (Jesse) Lai

5
5
5

5

Score-based model’s way to turn noise into data

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

6
6
6

6

Hold up, wait a minute, doesn’t this look
familiar?

Diffusion

(DDPM)

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 =

Score-based
model

(NCSN)

7
7
7

7

When the number of noise scales goes to infinity

It becomes a continuous-time stochastic process, many of which can be solved by

stochastic differential equations (SDEs)

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

8
8
8

8

Score SDE: Reverse Process w/ infinite noise scales

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG12RRHS

Brian D.O. Anderson. “Reverse-time diffusion equation models”. Stochastic Processes and their Applications 1982.

https://openreview.net/pdf?id=PxTIG12RRHS

9
9
9

9

Is there an even simpler way to do the same thing?

Image from Harry Potter

10
10
10

10

Let’s say we are given a data point, what would be
the simplest way to construct a trajectory from
noise to this data point?

?

11
11
11

11

How about let’s just do linear interpolation?

Image from PPAP

12
12
12

12

How about let’s just do linear interpolation?

25% data

75% noise

50% data 75% data

50% noise 25% noisesame noise

same data

point

13
13
13

13Then learning the transformations along this
trajectory is also easy

0.25 data

0.75 noise

0.5 data

0.5 noise

𝑥0 𝑥0.25 𝑥0.5 𝑥0.75 𝑥1

𝑥0.5 = 𝑥0.25 + 0.25 𝑑𝑎𝑡𝑎 − 0.25 𝑛𝑜𝑖𝑠𝑒

14
14
14

14Then learning the transformations along this
trajectory is also easy

0.25 data

0.75 noise

0.5 data

0.5 noise

𝑥0 𝑥0.25 𝑥0.5 𝑥0.75 𝑥1

𝑥0.5 = 𝑥0.25 + 0.25 (𝑥1 − 𝑥0)

15
15
15

15Then learning the transformations along this
trajectory is also easy

0.25 data

0.75 noise

0.5 data

0.5 noise

𝑥0 𝑥0.25 𝑥0.5 𝑥0.75 𝑥1

𝑥𝑡+Δ𝑡 = 𝑥𝑡 + Δ𝑡 (𝑥1 − 𝑥0)

Δ𝑡 → 0,
𝑑𝑥

𝑑𝑡
= 𝑥1 − 𝑥0

velocity

This is literally the thing we
want to learn

16
16
16

16

Training:

1. Sample noise 𝑥0~𝑁(0, 𝐼)

2. Sample data 𝑥0~𝑝𝑑𝑎𝑡𝑎

3. Uniformly sample time step 𝑡~𝑈(0,1)

4. Compute noisy sample 𝑥𝑡 = 𝑡𝑥1 + 1 − 𝑡 𝑥0

5. Compute velocity 𝑣 = 𝑥1 − 𝑥0

6. Learn to predict the velocity

𝐿 𝜃 = 𝐸[𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑣 ^2]

Learning to transform noise ”straight” into data

Now you have flow matching!

Sampling:

Using step size Δ𝑡, starting from 𝑡 = 0

1. Sample noise 𝑥0~𝑁 0, 𝐼

2. While 𝑡 < 1, do

1) Δ𝑥 = 𝑣𝜃(𝑥𝑡 , 𝑡)Δ𝑡

2) 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + Δ𝑥

3) 𝑡 = 𝑡 + Δ𝑡

3. Output 𝑥1

17
17
17

17

Why is this a proper probabilistic generative model?

18
18
18

18

To understand this, we need to go back in time
(pun intended)

GIF from Star Trek

19
19
19

19

Continuous normalizing flows

A CNF is a generative model that transports data from an initial distribution (denoted

as 𝑝0) to a target distribution (denoted as 𝑝1) by integrating an ODE.

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡 , 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣 𝑥𝜏, 𝜏 𝑑𝜏

velocity

sampling

Chen et al. Neural Ordinary Differential Equations. NeurIPS 2018. https://arxiv.org/abs/1806.07366

https://arxiv.org/abs/1806.07366

20
20
20

20

𝑥0 𝑥0.25 𝑥0.5 𝑥0.75 𝑥1

Δ𝑡 → 0,
𝑑𝑥

𝑑𝑡
= 𝑣(𝑥𝑡 , 𝑡)

velocity

Basically this but with generalized velocities

Sampling (Numerically solving of the ODE):

Using step size Δ𝑡, starting from 𝑡 = 0

1. Sample noise 𝑥0~𝑁 0, 𝐼

2. While 𝑡 < 1, do: Δ𝑥 = 𝑣𝜃 𝑥𝑡 , 𝑡 Δ𝑡, 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + Δ𝑥, 𝑡 = 𝑡 + Δ𝑡

3. Output 𝑥1

21
21
21

21Think of it as the wind flow transports water vapor
(humidity) from the west coast to the east coast

Image from https://www.snow-forecast.com/maps/static/usa/6/wind

https://www.snow-forecast.com/maps/static/usa/6/wind
https://www.snow-forecast.com/maps/static/usa/6/wind
https://www.snow-forecast.com/maps/static/usa/6/wind

22
22
22

22

Why is this a normalizing flow

The streams never cross!

23
23
23

23

Why is this a normalizing flow

Because the streams never cross, following the ODE flow is an invertible transformation!

Normalizing flows:

24
24
24

24

How does this connect to probability

In order for a CNF to model transports between probability distributions, we need the

following assumptions:

• Conservation of mass: No new mass and mass does not disappear

 => Probability always adds up to 1

• Continuity equation: Not only that the mass is conserved, it also does not teleport

 => Probability can only move/change continuously

25
25
25

25

Probability flux & divergence

Flux: the amount of flow per unit time through a unit space

=> Probability flux = velocity x density

where and how fast it flows
how much

probability it flows

26
26
26

26

Probability flux & divergence

Video generation by Veo

27
27
27

27

Probability flux & divergence

Flux: the amount of flow per unit time through a unit space

=> Probability flux = velocity x density

The two assumptions can be formally written in math in this way:

𝜕𝑝𝑡

𝜕𝑡
= −div 𝑝𝑡 𝑥𝑡 𝑣 𝑥𝑡 , 𝑡 = ෍

𝑑

𝜕𝑣 𝑥𝑡 , 𝑡

𝜕𝑥𝑡
(𝑑)

where and how fast it flows
how much

probability it flows

Divergence: how much probability that outflows

from a given point per unit time in every direction

28
28
28

28

Instantaneous change of variables (Chen et al. 2018)

𝜕𝑝𝑡

𝜕𝑡
= −div (𝑝𝑡(𝑥𝑡)𝑣 𝑥𝑡 , 𝑡)

1

𝑝𝑡(𝑥𝑡)

𝜕𝑝𝑡

𝜕𝑡
= −

1

𝑝𝑡(𝑥𝑡)
div(𝑝𝑡(𝑥𝑡)𝑣 𝑥𝑡 , 𝑡)

𝜕 log 𝑝𝑡

𝜕𝑡
= −

1

𝑝𝑡 𝑥𝑡
(< ∇𝑥𝑡

𝑝𝑡 , 𝑣 > +𝑝𝑡div(𝑣 𝑥𝑡 , 𝑡))

 = − (< ∇𝑥𝑡
log 𝑝𝑡 , 𝑣 > +div(𝑣 𝑥𝑡 , 𝑡))

 = − (< ∇𝑥𝑡
log 𝑝𝑡 , 𝜕𝑡𝑥𝑡 > +div(𝑣 𝑥𝑡 , 𝑡))

𝑑 log 𝑝𝑡

𝑑𝑡
=

𝜕 log 𝑝𝑡

𝜕𝑡
+ < ∇𝑥𝑡

log 𝑝𝑡 , 𝜕𝑡𝑥𝑡 >

𝑑 log 𝑝𝑡

𝑑𝑡
= −div(𝑣 𝑥𝑡, 𝑡)

Chen et al. Neural Ordinary Differential Equations. NeurIPS 2018. https://arxiv.org/abs/1806.07366

https://arxiv.org/abs/1806.07366

29
29
29

29

How CNF based models calculate likelihood

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡, 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣 𝑥𝜏, 𝜏 𝑑𝜏

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣 𝑥𝑡, 𝑡

log 𝑝𝑡 (𝑥𝑡) = log 𝑝0(𝑥0) − න
0

𝑡

div 𝑣 𝑥𝜏, 𝜏 𝑑𝜏

30
30
30

30

How to train your CNF models

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡, 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣 𝑥𝜏, 𝜏 𝑑𝜏

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣 𝑥𝑡, 𝑡

log 𝑝𝑡 (𝑥𝑡) = log 𝑝0(𝑥0) − න
0

𝑡

div 𝑣 𝑥𝜏, 𝜏 𝑑𝜏

31
31
31

31

Attempt 1: Maximum likelihood

𝑑𝑥𝑡

𝑑𝑡
= 𝑣𝜃(𝑥𝑡 , 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣𝜃 𝑥𝑡 , 𝑡

log 𝑝𝑡 (𝑥𝑡; 𝜃) = log 𝑝0(𝑥0) − න
0

𝑡

div 𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏

=> argmax𝜃 log 𝑝1 (𝑥1; 𝜃)

log 𝑝1 (𝑥1; 𝜃) = log 𝑝0(𝑥0) − න
0

1

𝑑𝑖𝑣 𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏

Need numerical

integration at training time

32
32
32

32

Attempt 2: Flow matching

𝑑𝑥𝑡

𝑑𝑡
= 𝑣𝜃(𝑥𝑡 , 𝑡)

𝑥𝑡 = 𝑥0 + න
0

𝑡

𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣𝜃 𝑥𝑡 , 𝑡

log 𝑝𝑡 (𝑥𝑡; 𝜃) = log 𝑝0(𝑥0) − න
0

𝑡

div 𝑣𝜃 𝑥𝜏, 𝜏 𝑑𝜏

=> Just need to make sure 𝑣𝜃 match with the ground truth velocity

=> 𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑢 𝑥𝑡, 𝑡
2

Both depend on the

same velocity field

Ground truth velocity

33
33
33

33

But we don’t have the ground truth velocity

34
34
34

34

What if we fix a point to transport

Poseidon generation by nano banana, Goku Kamehameha from https://www.reddit.com/r/dbz/comments/2ggs8j/goku_kamehameha_wallpaper/

https://www.reddit.com/r/dbz/comments/2ggs8j/goku_kamehameha_wallpaper/

35
35
35

35

Conditional probability path => Marginal probability path

Given a data point 𝑥1, it’s usually to define a conditional velocity field 𝑢𝑡(𝑥𝑡|𝑥1)

Then we call the trajectory of the probability distribution generated along the way

the conditional probability path 𝑝𝑡(𝑥𝑡|𝑥1)

Here the conditional probability path starts from the prior 𝑝0 𝑥 𝑥1 = 𝑝0(𝑥), and

always end up at 𝑥1 or a small Gaussian concentrated around 𝑥1, i.e. 𝑝1 𝑥 𝑥1 = 𝛿(𝑥1),

or 𝑝1 𝑥 𝑥1 = 𝑁(𝑥1, 𝜎2𝐼) with small 𝜎

Then then marginal probability path is

𝑝𝑡 𝑥𝑡 = ∫ 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1

𝑝1 𝑥 = ∫ 𝑝1 𝑥 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1 ≈ 𝑝𝑑𝑎𝑡𝑎 𝑥

Lipman et al. Flow Matching for Generative Modeling. ICLR 2023. https://arxiv.org/pdf/2210.02747

https://arxiv.org/pdf/2210.02747

36
36
36

36

Conditional velocity => Marginal velocity

With a conditional velocity 𝑢𝑡(𝑥𝑡|𝑥1), we can also define a marginal velocity

𝑢𝑡 𝑥𝑡 = ∫ 𝑢𝑡 𝑥𝑡 𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
𝑑𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
 : Pseudo “Bayes theorem”

• 𝑝𝑡 𝑥𝑡 𝑥1 : how likely is current intermediate sample along the conditional probability path

• 𝑝𝑑𝑎𝑡𝑎 𝑥1 : how likely is the data point that defines the conditional probability path

• 𝑝𝑡 𝑥𝑡 : how likely is the current intermediate sample in general (normalization)

37
37
37

37

Conditional velocity => Marginal velocity

With a conditional velocity 𝑢𝑡(𝑥𝑡|𝑥1), we can also define a marginal velocity

𝑢𝑡 𝑥𝑡 = ∫ 𝑢𝑡 𝑥𝑡 𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
𝑑𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
 : Pseudo “Bayes theorem”, sort of 𝑝𝑡 𝑥1 𝑥𝑡

𝑢𝑡 𝑥𝑡 = 𝐸𝑥1~𝑝𝑡 𝑥1 𝑥𝑡
[𝑢𝑡 𝑥𝑡 𝑥1]

Intuitively, it’s basically the average conditional velocity at location 𝑥𝑡 time 𝑡, weighted by

how likely the data point is for the current location and time

38
38
38

38

Marginal velocity generates marginal probability path

𝜕

𝜕𝑡
𝑝𝑡 𝑥𝑡 =

𝜕

𝜕𝑡
∫ 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1

= ∫ (
𝜕

𝜕𝑡
𝑝𝑡 𝑥𝑡 𝑥1)𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1

= ∫ − div(𝑝𝑡 𝑥𝑡 𝑥1 𝑢𝑡 𝑥𝑡|𝑥1)𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1

= −div(∫ 𝑢𝑡 𝑥𝑡|𝑥1 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1)

= −div(𝑢𝑡 𝑥𝑡 𝑝𝑡(𝑥𝑡))

𝑝𝑡 𝑥𝑡 = ∫ 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1 𝑢𝑡 𝑥𝑡 = ∫ 𝑢𝑡 𝑥𝑡 𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
𝑑𝑥1

𝜕𝑝𝑡

𝜕𝑡
= −div(𝑝𝑡𝑣𝑡)

39
39
39

39

Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡)[𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑢𝑡 𝑥𝑡
2

]

= 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑢𝑡 𝑥𝑡
2

+ 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑢𝑡 𝑥𝑡|𝑥1
2

]

= 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑢𝑡 𝑥𝑡|𝑥1
2

+ 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

Constant w.r.t. 𝜃

40
40
40

40

Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

41
41
41

41

Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

𝐸𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

= ∫ ∫ 𝑣𝜃 𝑥𝑡 , 𝑡
2
 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥𝑡𝑑𝑥1

= ∫ 𝑣𝜃 𝑥𝑡 , 𝑡
2

𝑝𝑡 𝑥𝑡 𝑑𝑥𝑡 = 𝐸𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

42
42
42

42

Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1, 𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

𝐸𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 = ∫ 𝑣𝜃 𝑥𝑡 , 𝑡 , ∫ 𝑢𝑡 𝑥𝑡 𝑥1

𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1

𝑝𝑡 𝑥𝑡
𝑑𝑥1 𝑝𝑡(𝑥𝑡)𝑑𝑥𝑡

= ∫ 𝑣𝜃 𝑥𝑡 , 𝑡 , ∫ 𝑢𝑡 𝑥𝑡 𝑥1 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1 𝑑𝑥𝑡

= ∫ 𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 𝑥1 𝑝𝑡 𝑥𝑡 𝑥1 𝑝𝑑𝑎𝑡𝑎 𝑥1 𝑑𝑥1𝑑𝑥𝑡

= 𝐸𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

43
43
43

43

Matching conditional velocity <=> Matching marginal velocity

𝐿𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑡(𝑥𝑡) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑡(𝑥𝑡)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡 〉]

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1) 𝑣𝜃 𝑥𝑡 , 𝑡
2

− 2𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝𝑡(𝑥𝑡|𝑥1)[⟨𝑣𝜃 𝑥𝑡 , 𝑡 , 𝑢𝑡 𝑥𝑡|𝑥1 〉]

 argmin𝜃𝐿𝐹𝑀 𝜃 = argmin𝜃𝐿𝐶𝐹𝑀 𝜃

We just need to match the conditional velocity

𝑣𝜃 𝑥𝑡 , 𝑡 − 𝑢𝑡 𝑥𝑡|𝑥1
2
 !!!

44
44
44

44Now suppose our conditional probability path is to
transform a Gaussian straight to a single point with
constant speed

𝑝0 = 𝑁 0, 𝐼 , 𝑝1 = 𝛿(𝑥1)

𝑥𝑡 = 𝑡𝑥1 + 1 − 𝑡 𝑥0, 𝑥0~𝑝0

𝑝𝑡(𝑥𝑡|𝑥1) = 𝑁(𝑡𝑥1, 1 − 𝑡 2𝐼)

𝑑𝑥𝑡

𝑑𝑡
= 𝑢 𝑥𝑡 𝑥1 = 𝑥1 − 𝑥0

𝐿𝐶𝐹𝑀 𝜃 = 𝐸𝑡,𝑝𝑑𝑎𝑡𝑎 𝑥1 ,𝑝0(𝑥0)[𝑣𝜃 𝑥𝑡 , 𝑡 − (𝑥1 − 𝑥0)
2

]

Image from https://alechelbling.com/blog/rectified-flow/

https://alechelbling.com/blog/rectified-flow/
https://alechelbling.com/blog/rectified-flow/
https://alechelbling.com/blog/rectified-flow/

45
45
45

45

Cond-OT flow matching

Geng et al. “Mean Flows for One-step Generative Modeling”. NeurIPS 2025. https://arxiv.org/pdf/2505.13447

https://arxiv.org/pdf/2505.13447

46
46
46

46

Cond-OT flow matching a.k.a Rectified flow a.k.a A
special case of stochastic interpolant

Three different groups of people develop the same algorithm from different

theoretical perspective at the same time!

• Lipman et al. “Flow matching for generative modeling”. ICLR 2023.

https://arxiv.org/pdf/2210.02747

• Liu & Gong. “Flow Straight and Fast: Learning to Generate and Transfer Data with

Rectified Flow”. ICLR 2023. https://arxiv.org/pdf/2209.03003

• Albergo & Vanden-Eijnden. “Building Normalizing Flows with Stochastic

Interpolants”. ICLR 2023. https://arxiv.org/pdf/2209.15571

https://arxiv.org/pdf/2210.02747
https://arxiv.org/pdf/2209.03003
https://arxiv.org/pdf/2209.15571

47
47
47

47

Hmm but the marginal flows are not the straightest

Geng et al. “Mean Flows for One-step Generative Modeling”. NeurIPS 2025. https://arxiv.org/pdf/2505.13447

https://arxiv.org/pdf/2505.13447

48
48
48

48

Reflow: Flow matching on the flow matched pairs

Liu & Gong. “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”. ICLR 2023. https://arxiv.org/pdf/2209.03003

https://arxiv.org/pdf/2209.03003

49
49
49

49

Diffusion v.s. Flow matching

• Diffusion is like wandering in the woods with a compass

• Flow matching is like sitting on a boat in a river

50
50
50

50

So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM), diffusion models

• Likelihood Free: Generative adversarial networks (GAN), score-based models,

flow matching

Directly sampling from P(X) is usually hard because they are usually complicated! But

sampling from a simpler distribution (eg. a Gaussian) is easy!

Same

thing!

51
51
51

51

So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM), diffusion models

• Likelihood Free: Generative adversarial networks (GAN), score-based models,

flow matching

Directly sampling from P(X) is usually hard because they are usually complicated! But

sampling from a simpler distribution (eg. a Gaussian) is easy!

Same

thing?

52
52
52

52

Diffusion path flow matching == diffusion

Cond-OT path:

𝑝0 = 𝑁 0, 𝐼 , 𝑝1 = 𝛿(𝑥1)

𝑥𝑡 = 𝑡𝑥1 + 1 − 𝑡 𝑥0, 𝑥0~𝑝0

𝑝𝑡(𝑥𝑡|𝑥1) = 𝑁(𝑡𝑥1, 1 − 𝑡 2𝐼)

𝑑𝑥𝑡

𝑑𝑡
= 𝑢 𝑥𝑡 𝑥1 = 𝑥1 − 𝑥0

VE diffusion path:

𝑝0 = 𝑁 0, 𝐼 , 𝑝1 = 𝛿(𝑥1)

𝑥𝑡 = 𝑥1 + 𝜎1−𝑡𝜖𝑡 , 𝜖𝑡~𝑁 0, 𝐼

𝑝𝑡(𝑥𝑡|𝑥1) = 𝑁(𝑥1, 𝜎1−𝑡
2𝐼)

𝑑𝑥𝑡

𝑑𝑡
= 𝑢 𝑥𝑡 𝑥1 = −

𝜎1−𝑡
′

𝜎1−𝑡
(𝑥𝑡 − 𝑥1)

53
53
53

53

How about Score SDE => Flow ODE?

Velocity?

Need to take care of the

probability induced by this part!

54
54
54

54

Probability flow ODE:

 Continuity equation:

𝜕𝑡𝑝𝑡 𝑥 = −div 𝑣𝑡 𝑥 𝑝𝑡 𝑥

= −div 𝑓 𝑥, 𝑡 𝑝𝑡 𝑥 +
1

2
𝑔 𝑡 2div 𝑝𝑡 𝑥 ∇𝑥 log 𝑝𝑡(𝑥)

= −div 𝑓 𝑥, 𝑡 𝑝𝑡 𝑥 +
1

2
𝑔 𝑡 2div ∇𝑥𝑝𝑡(𝑥)

= −div 𝑓 𝑥, 𝑡 𝑝𝑡 𝑥 +
1

2
𝑔 𝑡 2Δ𝑥𝑝𝑡(𝑥)

Score SDE => Flow ODE via Fokker–Planck PDE

Reverse Score SDE:

 Forward SDE:

𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

Fokker–Planck PDE of the forward SDE:

 𝜕𝑡𝑝𝑡 𝑥 = −div 𝑓 𝑥, 𝑡 𝑝𝑡 𝑥 +
1

2
𝑔 𝑡 2Δ𝑥𝑝𝑡(𝑥)

Same PDE for 𝜕𝑡𝑝𝑡 𝑥 <=> Marginals 𝑝𝑡 𝑥 are the same!

You can sample with

this ODE now!

55
55
55

55

Density estimation with flow matching

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡, 𝑡)

ෝ𝑥𝑡 = 𝑥1 − න
𝑡

1

𝑣 ො𝑥𝜏, 𝜏 𝑑𝜏

𝑑 log 𝑝𝑡

𝑑𝑡
= −𝑑𝑖𝑣 𝑣 𝑥𝑡 , 𝑡

log 𝑝1 (𝑥1) = log 𝑝0(ො𝑥0) − න
0

1

𝑑𝑖𝑣 𝑣 ො𝑥𝜏, 𝜏 𝑑𝜏

56
56
56

56

Density estimation with diffusion Attempt 1: ELBO

log 𝑝𝜃(𝑥0) = log ∫ 𝑝𝜃 𝑥0:𝑇 𝑑𝑥1:𝑇

= log ∫ 𝑞(𝑥1:𝑇|𝑥0)
𝑝𝜃 𝑥0:𝑇

𝑞(𝑥1:𝑇|𝑥0)
𝑑𝑥1:𝑇

= log 𝐸𝑞 𝑥1:𝑇 𝑥0
[

𝑝𝜃 𝑥0:𝑇

𝑞 𝑥1:𝑇 𝑥0
]

≥ 𝐸𝑞 𝑥1:𝑇 𝑥0
[log

𝑝𝜃 𝑥0:𝑇

𝑞 𝑥1:𝑇 𝑥0
]

=> Just use the loss function as an estimation of the density

57
57
57

57

Density estimation with diffusion Attempt 2: PF ODE

𝑑𝑥𝑡

𝑑𝑡
= 𝑣(𝑥𝑡, 𝑡)

ෝ𝑥𝑡 = 𝑥1 − න
𝑡

1

𝑣 ො𝑥𝜏, 𝜏 𝑑𝜏

𝑑 log 𝑝𝑡

𝑑𝑡
= −div 𝑣 𝑥𝑡 , 𝑡

log 𝑝1 (𝑥1) = log 𝑝0(ො𝑥0) − න
0

1

div 𝑣 ො𝑥𝜏, 𝜏 𝑑𝜏

58
58
58

58

So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM), diffusion models

• Likelihood Free: Generative adversarial networks (GAN), score-based models,

flow matching

Directly sampling from P(X) is usually hard because they are usually complicated! But

sampling from a simpler distribution (eg. a Gaussian) is easy!

Same

thing!

59
59
59

59

We have gone through all the basics!

Starting from next week, we will be exploring different options to improve diffusion

and flow matching models

• The design space of diffusion models (i.e. what knobs can we tune to make the

models better)

• How to make generation faster (through training and with no additional training)

• How to make the generation more controllable (through training and with no

additional training)

	Slide 1
	Slide 2: Quiz time!
	Slide 3: Housekeeping Announcements
	Slide 4: Diffusion’s way to turn noise into data
	Slide 5: Score-based model’s way to turn noise into data
	Slide 6: Hold up, wait a minute, doesn’t this look familiar?
	Slide 7: When the number of noise scales goes to infinity
	Slide 8: Score SDE: Reverse Process w/ infinite noise scales
	Slide 9: Is there an even simpler way to do the same thing?
	Slide 10: Let’s say we are given a data point, what would be the simplest way to construct a trajectory from noise to this data point?
	Slide 11: How about let’s just do linear interpolation?
	Slide 12: How about let’s just do linear interpolation?
	Slide 13: Then learning the transformations along this trajectory is also easy
	Slide 14: Then learning the transformations along this trajectory is also easy
	Slide 15: Then learning the transformations along this trajectory is also easy
	Slide 16: Learning to transform noise ”straight” into data
	Slide 17: Why is this a proper probabilistic generative model?
	Slide 18: To understand this, we need to go back in time (pun intended)
	Slide 19: Continuous normalizing flows
	Slide 20: Basically this but with generalized velocities
	Slide 21: Think of it as the wind flow transports water vapor (humidity) from the west coast to the east coast
	Slide 22: Why is this a normalizing flow
	Slide 23: Why is this a normalizing flow
	Slide 24: How does this connect to probability
	Slide 25: Probability flux & divergence
	Slide 26: Probability flux & divergence
	Slide 27: Probability flux & divergence
	Slide 28: Instantaneous change of variables (Chen et al. 2018)
	Slide 29: How CNF based models calculate likelihood
	Slide 30: How to train your CNF models
	Slide 31: Attempt 1: Maximum likelihood
	Slide 32: Attempt 2: Flow matching
	Slide 33: But we don’t have the ground truth velocity
	Slide 34: What if we fix a point to transport
	Slide 35: Conditional probability path => Marginal probability path
	Slide 36: Conditional velocity => Marginal velocity
	Slide 37: Conditional velocity => Marginal velocity
	Slide 38: Marginal velocity generates marginal probability path
	Slide 39: Matching conditional velocity <=> Matching marginal velocity
	Slide 40: Matching conditional velocity <=> Matching marginal velocity
	Slide 41: Matching conditional velocity <=> Matching marginal velocity
	Slide 42: Matching conditional velocity <=> Matching marginal velocity
	Slide 43: Matching conditional velocity <=> Matching marginal velocity
	Slide 44: Now suppose our conditional probability path is to transform a Gaussian straight to a single point with constant speed
	Slide 45: Cond-OT flow matching
	Slide 46: Cond-OT flow matching a.k.a Rectified flow a.k.a A special case of stochastic interpolant
	Slide 47: Hmm but the marginal flows are not the straightest
	Slide 48: Reflow: Flow matching on the flow matched pairs
	Slide 49: Diffusion v.s. Flow matching
	Slide 50: So far we have seen a bunch of generative models…
	Slide 51: So far we have seen a bunch of generative models…
	Slide 52: Diffusion path flow matching == diffusion
	Slide 53: How about Score SDE => Flow ODE?
	Slide 54: Score SDE => Flow ODE via Fokker–Planck PDE
	Slide 55: Density estimation with flow matching
	Slide 56: Density estimation with diffusion Attempt 1: ELBO
	Slide 57: Density estimation with diffusion Attempt 2: PF ODE
	Slide 58: So far we have seen a bunch of generative models…
	Slide 59: We have gone through all the basics! 🎉

