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Quiz time!

10 minutes
Closed-book

Pen & Paper

If you don't want to stay for the
lecture, feel free to leave after

submitting your quiz!

Q1. Write out the expression of score function in terms of z and p [1 pts]

Q2. (True/False) (1 pts]

Score-based models and DDPM are completely unrelated approaches to generative modeling.

O True O False

Q3. (True/False) [1 pts]
Adding noise to data helps score matching work better in low-density regions.

O True O False

Q4. Langevin dynamics generates samples by [1 pts]
(O Directly using chain rule
(O Iteratively following the score with added noise

(O Training a discriminator network
(O Maximizing the likelihood

Q5. Select ALL that are benefits of score matching over maximum likelihood (Select
all that apply) (1 pts]
[0 Can train models defined by unnormalized probability densities
[0 Guarantees faster training
[0 Guarantees faster sampling
O Only requires to predict the gradient of the log density, not the density itself
O Always produces better samples
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Housekeeping Announcements

« Homework 1 is out! https://kellyyutonghe.github.io/10799526/homework/
* Q6 (Alternative Parameterization) is now an optional extra credit question!
 Due date: 1/24 Sat, Late Due date: 1/26 Mon
* Training models takes time! Start early!

« Office Hours are announced:
* Kellyis hosting OH

* In-person: Wednesdays 1:00 PM - 2:00 PM, Gates 8th Floor common
area near the printer

* Virtual: Fridays 11:00 AM - 12:00 PM, Discord

* Krish is hosting OH Tuesdays 4:00 PM - 5:00 PM, Gates 8th Floor common
area near the printer

* Extra OH this week: Friday 3 - 4 PM same location Carnegie
Mellon

University


https://kellyyutonghe.github.io/10799S26/homework/

Diffusion’s way to turn noise into data

Forward process
(adding noise)

Reserve process
(denoising)
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Score-based model’s way to turn noise into data
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https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

Hold up, wait a minute, doesn’t this look 5
familiar? B L

Diffusion
(DDPM)

X3 Noise x,

Score-based
model

(NCSN)
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When the number of noise scales goes to infinity

It becomes a continuous-time stochastic process, many of which can be solved by

stochastic differential equations (SDEs)

—— Stochastic process
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Figure from Yang Song https://yang-song.net/blog/2021/score/



https://yang-song.net/blog/2021/score/
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Score SDE: Reverse Process w/ infinite noise scales
Forward SDE (data — noise)
@ dx = f(x,t)dt + g(t)dw
- o ) sca:) funtio o o
‘(* dx = [f(x,t) — ¢° (t)&x log p; (x)| dt + g(t)dw

Reverse SDE (noise — data)

Carnegie

Brian D.O. Anderson. “Reverse-time diffusion equation models”. Stochastic Processes and their Applications 1982. Mellon

University
Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https.//openreview.net/ndf2id=PxTIG 12RRHS


https://openreview.net/pdf?id=PxTIG12RRHS

Is there an even simpler way to do the same thing?

o, you can‘tiiThere must}

be anotherway. X
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Let's say we are given a data point, what would be
the simplest way to construct a trajectory from
noise to this data point?
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How about let’s just do linear interpolation?
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Image from PPAP
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How about let’s just do linear interpolation?

same noise  75% noise - 50% noise
2o a3 b

25% data 50% data F‘.‘é‘ 75% data
f o

same data
point
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Then learning the transformations along this 13
trajectory is also easy

Xos5 = Xg25 + 0.25 data — 0.25 noise

0.75noise = 05noise =
< “ .' 1%. i, Y

Xo xo.;\x X0.5
0.25 data 0.5 data E{;&‘
N |
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Then learning the transformations along this 14
trajectory is also easy

Xo5 = Xg25 + 0.25 (X1 — x¢)

0.75noise = 05noise =
< “ .' 1%. i, Y

Xo xo.;\x X0.5
0.25 data 0.5 data E{;&‘
N |
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Then learning the transformations along this 15
trajectory is also easy

Xeyar = X¢ + At (X1 — Xg)

0.75 noise = = At = 0, — = x, —x,

dt
™~ velocity

X s

0.5noise = dx

X0.75

This is literally the thing we

'S want to lea ép .
arnegie

Mellon

University



16

Learning to transform noise “straight” into data

Training: Sampling:
1. Sample noise x,~N(0, 1) Using step size At, starting from t =0
2. Sample data xo~pgiata 1. Sample noise x,~N(0, 1)
3. Uniformly sample time step t~U(0,1) 2. Whilet < 1,do
4. Compute noisy sample x; = tx; + (1 — t)x, 1) Ax = vg(xg, t)AL
5. Compute velocity v = x; — x, 2) Xepnr = X¢ + Ax
6. Learn to predict the velocity 3) t=t+At
L(0) = E[|lvg(xe, ©) — vl|"2] 3. Output x,

Now you have flow matching! (amesie

University
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Why is this a proper probabilistic generative model?
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To understand this, we need to go back in time
(pun intended)

WE'RE GOING
< BACKWARD IN TIME.

GIF from Star Trek
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Continuous normalizing flows

A CNF is a generative model that transports data from an initial distribution (denoted

as p,) to a target distribution (denoted as p,) by integrating an ODE.

dx;
T V(X t)

velocity

t
Xy = X +j v(x,, 7)dt
0

sampling ]
Carnegie
Mellon
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Chen et al. Neural Ordinary Differential Equations. NeurlPS 2018. https://arxiv.org/abs/1806.07 366


https://arxiv.org/abs/1806.07366

Basically this but with generalized velocities

dx
At - 0, i v(xe, t)
h velocity

X0

X0.25
Sampling (Numerically solving of the ODE):

Using step size At, starting fromt =0

1. Sample noise x,~N(0, 1)

2. Whilet <1, do: Ax = vy(x;, )AL, Xponr = X + Ax, t =t + At
3. Output x,

20
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Think of it as the wind flow transports water vapor =
(humidity) from the west coast to the east coast

Surface Wind/MSL Pressure on Wednesday 21 Jan at 7pm EST
Arrows show the wind direction
JRTRRAN b

(mph)

0 3 6 9 12 16 19 22 25 28 31 34 37 40 43 47 50 53 56 59 62
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https://www.snow-forecast.com/maps/static/usa/6/wind
https://www.snow-forecast.com/maps/static/usa/6/wind
https://www.snow-forecast.com/maps/static/usa/6/wind

Why is this a normalizing flow

Sﬁrféce Wmd/MSL F;ressure on Wédnesday 21 Jan at 7pm EST
Arrows show the wind direction
ARSI b

0 3 6 9 12 16 19 22 25 28 31 34 37 40 43 47 50 53 56 59 62

The streams never cross!

22
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Why is this a normalizing flow

Normalizing flows:

X )

Flow

A

A\

Inverse

(=)

23

Y

Because the streams never cross, following the ODE flow is an invertible transformation!

(mph)

Surface Wind/MSL Pressure on Wednesday 21 Jan at 7pm EST
Arrows show the wind direction

0 3 6 9 12 16 19 22 25 28 31 34 37 40 43 47 50 53 56 59 62
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How does this connect to probability

In order for a CNF to model transports between probability distributions, we need the

following assumptions:

« Conservation of mass: No new mass and mass does not disappear

=> Probability always adds up to 1
- Continuity equation: Not only that the mass is conserved, it also does not teleport

=> Probability can only move/change continuously

Carnegie
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Probability flux & divergence

Flux: the amount of flow per unit time through a unit space
=> Probability flux = velocity x derls;ity

25

where and how fast it flows

how much

probability it flows
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Probability flux & divergence

Video generation by Veo

26
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Probability flux & divergence

Flux: the amount of flow per unit time through a unit space
=> Probability flux = velocity x derls;ity

how much

where and how fast it flows probability it flows

The two assumptions can be formally written in math in this way:

av(xtJ t)
Oxt(d)

0p¢ :
a_i = —le(pt(x})U(Xt; ) = Z

Divergence: how much probability that outflows .
Carnegie

from a given point per unit time in every direction Me!lOl’l ]
University
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Instantaneous change of variables (Chen et al. 2018)

dp .
a—tt = —div (p;(xp)v(xs, 1))
1 0Jp;
_— = le X v(x 't)
d1 pe(x¢) Ot p(xt) (e )vlxe 1)
ogpt _ -
ot = ooy (S VePuv > +pdivv(, )

= — (< Vi, logpe, v > +div(v(x, t)))

= — (< Vy, logpy, 0px; > +div(v(x, 1))
d log p; B d log p;

+ < Vy, logp:,0cx: >

dtdl ot

0

df Pe _ —div(v(x, t))
Carnegie
Mellon
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Chen et al. Neural Ordinary Differential Equations. NeurlPS 2018. https://arxiv.org/abs/1806.07 366


https://arxiv.org/abs/1806.07366
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How CNF based models calculate likelihood

dx;
E = v(xt, t)

t
Xy = X +j v(x,, T)dt
0

dlogp, .
ke —div(v(x,, t))

log pe (%) = log po (o) — j div(v(x, 0))dr

Carnegie
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How to train your CNF models

dx;
=~ v t)
t
Xy = X +j v(x,, T)dt
0
dlo
dgt 2t —div(v(x,, t))

log pe (%) = log po (o) — j div(v(x, 0))dr
0

30
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Attempt 1: Maximum likelihood

dx;

a2 Ve (x¢, t)

t
Xy = Xo + f vg(x,, T)dT
0

d logp;
dt

= —div(vg(x;, t))
t

logpe (x¢;0) = logpo(xo) — j div(vg(x,, 7))dr
0

=> argmaxg log p; (x1; 6) Need numerical
A// integration at training time
1
l0g Py (4:0) = log po(x) — | div(vy(xr, D) dr Carnegie
° Mellon

University
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Attempt 2: Flow matching

dx;

a2 = velxet)
t
Xe = Xo fo vp (e )dr Both depend on the
dlo ity fi
d:‘ipt = —div(ve(x,, 1)) same velocity field

t

logpe (x¢;0) = logpo(xo) — f div(vg(x,, 7))dr
0

=> Just need to make sure vy match with the ground truth velocity

=> ||vg (xe, 1) — (e, OI|°
%\ Carnegie
Mellon

Ground truth velocit University



But we don’t have the ground truth velocity

Surface Wind/-IV\ZVS'L Pressure on Wédnesday 21 Jan at 7pm EST
Arrows show the wind direction
b Ny, ¥ ;"1' i -

0 3 6 9 12 16 19 22 25 28 31 34 37 40 43 47 50 53 56 59 62

33
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What if we fix a point to transport

Surface Wind/MSL Pressure on Wednesday 21 Jan at 7pm EST
Arrows show the wind direction

P ———
12 16 19 22 25 28 31 34 37 40 43 47 50 53 56 59 62

© -
w -
o -
O -

Poseidon generation by nano banana, Goku Kamehameha from https:

Carnegie
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https://www.reddit.com/r/dbz/comments/2ggs8j/goku_kamehameha_wallpaper/
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Conditional probability path => Marginal probability path

Given a data point x4, it's usually to define a conditional velocity field wu,(x;|x;)

Then we call the trajectory of the probability distribution generated along the way

the conditional probability path p,(x;|x;)

Here the conditional probability path starts from the prior py(x|x;) = po(x), and
always end up at x; or a small Gaussian concentrated around x4, i.e. p;(x]|x;) = 6(xy),

or p;(x|x;) = N(x1,02%I) with small ¢
Then then marginal probability path is

pe(xe) = fpt(xtlxl)pdata(xl)dxl

p1(x) = [ p1(x1x)Paara(x)dxy = Pagea(x) E/[%Il-lr(l)(le’lgle

University
Lipman et al. Flow Matching for Generative Modeling. ICLR 2023. https://arxiv.org/pdf/2210.02747


https://arxiv.org/pdf/2210.02747
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Conditional velocity => Marginal velocity

With a conditional velocity u;(x;|x,), we can also define a marginal velocity

Pe(xel X)) Paara(x1)
pe(xe)

ur(xe) = [ ueCoxelxy) dxy

Pe(X¢|X1)Paata(x1)
pe(x¢)

: Pseudo “Bayes theorem”

*  p:(x:lxy) : how likely is current intermediate sample along the conditional probability path
*  paara(x1): how likely is the data point that defines the conditional probability path

*  p:(x) : how likely is the current intermediate sample in general (normalization)
Carnegie
Mellon
University
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Conditional velocity => Marginal velocity

With a conditional velocity u;(x;|x,), we can also define a marginal velocity

Pe(xel X)) Paara(x1)
pe(xe)

ur(xe) = [ ueCoxelxy) dxy

Pe(X¢|X1)Paata(x1)
pe(x¢)

: Pseudo “Bayes theorem”, sort of p;(x4|x;)

ug(xy) = E pe(y] %) [e Cxe 1)

Intuitively, it's basically the average conditional velocity at location x; time t, weighted by

how likely the data pointis for the current location and time .
Carnegie
Mellon
University
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Marginal velocity generates marginal probability path

pex0) = | PeCecl¥)Paara e dx; () = [ ugCrgly) P DPaaalx) |
op: pe(xy)
E = —div(psvy) 6 a
Ept(xt) = afpt(xtlxl)pdata(xl)dxl
_¢,0
= f (gpt(xt|x1))pdata(x1)dx1
- f — div(pe (x| x ) ue (e |x1))Paara (1) dxq
= _diV(f U (e |x) P (Xl X)) Dgara(x1) dxq)
= —div(u.(x)pe(xr))
Carnegie
Mellon
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Matching conditional velocity <=> Matching marginal velocity

2
Ley(6) = Et,pt(xt)[“Ve(xt» t) — ut(xt)” |

2 2
= Et p,(x0) xt)” ] + Etpe(xe) [|Iv9 (xe, t)|| ] — 2Bt po(xp) [(ve (xt, £), ug (x¢))]

2
Lerm(0) = Et,pdata(xl),pt(xt|x1)[||v9(xt' t) — ut(xtlxl)” |

— ) 2
= Et,pdata(x1).pt(9TtWHML(2€f|x1)U + Et;pdata(x1),pt(xt|x1) [“VB(xt; t)ll ]

Ddata(x1).pe(xe|x1) [{ve (xt' t), ut(xt |x1) )]

Constant w.r.t. 8 Carnegie

Mellon
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Matching conditional velocity <=> Matching marginal velocity

L (8) = Eqpeay 1170 Cres 11| = 2E¢ ey [ (e, £), e (x0)]

2
Lerm(6) = Et:pdata(xl):pt(xt|x1) [l lvg (x¢, t)ll ] — ZEt»pdata(xl)»pt(xtlxl) [(vo(xe, £), ue(xe|x1))]

Carnegie
Mellon
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Matching conditional velocity <=> Matching marginal velocity

2
Ley(0) = Etp,xp) [||779 (x¢) t)|| ] = 2E¢ p,(xp) [(vo(xe, £), us(x))]
2
Lerm(0) = Etpaaeaten)peCeelxn) [| [ve (x¢, t)|| ] ~ 2Bt paara(x) pe(xelxs) [(vo(xe, 1), ueCxelx))]

2 2
EpaaeaGenmereten |76 G O = 1 1 1w G DI peCrel 20 Paacalen) dedixy

= [ |lve(xy, t)||2pt(xt)dxt = Ep. (xp) [“Ve(xt; t)||2]

Carnegie
Mellon
University
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Matching conditional velocity <=> Matching marginal velocity

Lem(0) = Etp,(xp [||179 (xt, t)||2] — 2E¢ p, xp (Ve (xe, 1), ur(x))]

2
Lerm () = Etpaaeaen)peCeelxn) [l [ve (x¢, t)ll ] = 2Bt pgara(x1)pe(xelxr) [(vo (xe, t), ur(xe|x1))]

Pe(Xe| X)) Dageq(x1)
pe(xp)

Ep e [{ve (g, £), ue (x))] = J {vo(xe, ), | ueCoelxy) dxy | pe(xe)dx,

= f(ve(xt; t);fut(xt|x1)pt(xt|x1)pdata(x1)dx1>dxt

= [ (vg(xp, ), ue Cxel ) pe (el 1) Dagea (1) dxy dxy

= EpgaraCen)pe el (Vo (e, £), ue (el x0))] Carnegie
Mellon
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Matching conditional velocity <=> Matching marginal velocity

2
Ley(0) = Et poxp [“179 (x¢) t)” ] —2E¢p,(xp) [(vo(x¢, £), ue(x))]
2
Lerm(0) = Etpygra ey peelcn) [||ve (e, O ] = 2E ¢t pgaralen) peeelxn [(Vo (X6, 1), ue (X X1))]
= argmingLgy (0) = argmingLcp,(6)

— We just need to match the conditional velocity

2
||779(xt; t) — ut(xtlxl)” !

Carnegie
Mellon
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Now suppose our conditional probability pathisto  «
transform a Gaussian straight to a single point with
constant speed

Po P1
po = N(0,1),p; = 6(x1)

Xy = tx; + (1 —t)x, Xo~Do % o

pe(x¢|x1) = N(txq, (1 = t)?])

e ey
— = u(xelx) =2, — x
dt tit1 1 0

2
Lery(6) = Et,'pdata(xl).po(xo)[“ve (xe,t) — (x1 — xo)ll |

Carnegie
Mellon
University

Image from https://alechelbling.com/blog/rectified-flow/


https://alechelbling.com/blog/rectified-flow/
https://alechelbling.com/blog/rectified-flow/
https://alechelbling.com/blog/rectified-flow/
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Cond-OT flow matching

Figure 2: Velocity fields in Flow Matching [28]. Left: con-
ditional flows [28]. A given z; can arise from different (z, €)
pairs, resulting in different conditional velocities v;. Right:
marginal flows [28], obtained by marginalizing over all possi-
ble conditional velocities. The marginal velocity field serves
as the underlying ground-truth field for network training. All
velocities shown here are essentially instantaneous veloc-
ities. Illustration follows [12]. (Gray dots: samples from
prior; red dots: samples from data.)

Carnegie
Mellon

University
Geng et al. “Mean Fows for One-step Generative Modeling”. NeurlPS 2025. https./arxiv.org/pdf/2505.13447


https://arxiv.org/pdf/2505.13447
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Cond-OT flow matching a.k.a Rectified flow a.k.a A
special case of stochastic interpolant

Three different groups of people develop the same algorithm from different

theoretical perspective at the same time!

« Lipman et al. “Flow matching for generative modeling”. ICLR 2023.
https://arxiv.org/pdf/2210.02747

« Liu & Gong. “Flow Straight and Fast: Learning to Generate and Transfer Data with
Rectified Flow". ICLR 2023. https://arxiv.org/pdf/2209.03003

« Albergo & Vanden-Eijnden. “Building Normalizing Flows with Stochastic
Interpolants”. ICLR 2023. https://arxiv.org/pdf/2209.15571

Carnegie
Mellon
University


https://arxiv.org/pdf/2210.02747
https://arxiv.org/pdf/2209.03003
https://arxiv.org/pdf/2209.15571
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Hmm but the marginal flows are not the straightest

Figure 2: Velocity fields in Flow Matching [28]. Left: con-
ditional flows [28]. A given z; can arise from different (z, €)
pairs, resulting in different conditional velocities v;. Right:
marginal flows [28], obtained by marginalizing over all possi-
ble conditional velocities. The marginal velocity field serves
as the underlying ground-truth field for network training. All
velocities shown here are essentially instantaneous veloc-
ities. Illustration follows [12]. (Gray dots: samples from
prior; red dots: samples from data.)

Carnegie
Mellon
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Geng et al. “Mean Aows for One-step Generative Modeling”. NeurlPS 2025. https.//arxiv.org/pdf/2505.13447


https://arxiv.org/pdf/2505.13447
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Reflow: Flow matching on the flow matched pairs

o Z 'm " e 'ﬁ w " «ﬁ T " m
e
b

=Rectiﬁed Flow
== ), [t §
ﬁ, Swssss=Interpolation
(a) Linear interpolation (b) Rectified flow Z¢ (c) Linear interpolation (d) Rectified flow Z;
Xy =tX1+ (1 —1t)Xo inducedby (Xo, X1) Zy=tZ1+(1—1t)Zo induced by (Zop, Z1)
Carnegie
Mellon
University

Liu & Gong. “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”. ICLR 2023. https://arxiv.org/pdf/2209.03003


https://arxiv.org/pdf/2209.03003

Diffusion v.s. Flow matching

Diffusion is like wandering in the woods with a compass

Flow matching is like sitting on a boat in a river

49
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So far we have seen a bunch of generative models...

In general, we can roughly categorize generative models into the following categories

« Likelihood Based: Autoregressive models, variational autoencoders (VAE), Same

normalizing flow, energy-based models (EBM), diffusion models <+ / thing!

 Likelihood Free: Generative adversarial networks (GAN), score-based models,

flow matching

Random Noise .A.

€ ~ p(e)
Directly sampling from P(X) is usually hard because they are usuaIIy complicated! But Carnegle
Mellon
University

sampling from a simpler distribution (eg. a Gaussian) is easy!
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So far we have seen a bunch of generative models...

In general, we can roughly categorize generative models into the following categories

+ Likelihood Based: Autoregressive models, variational autoencoders (VAE), Same
normalizing flow, energy-based models (EBM), diffusion models = 7 thing?
« Likelihood Free: Generative advecsariaimietworks (GAN), score-based models,
k

flow matching

Random Noise .A. (

€ ~ p(e)

T = g(€)
Directly sampling from P(X) is usually hard because they are usually complicated! But Carnegie

Mellon
University

sampling from a simpler distribution (eg. a Gaussian) is easy!
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Diffusion path flow matching == diffusion

Cond-OT path: VE diffusion path:

po = N(0,1),p; = 8(x1) po = N(0,1),p1 = 6(xy)

Xy = txg + (1 — t)xo, Xo~Do Xy = X1 + O1_t€¢, e.~N(0,1)
Pe(xe]x1) = N(txy, (1 = t)*I) Pe(xelx1) = N(xq,01_¢°1)

dxt dxt O-{—t

ke u(xe|xy) = x1 — xg Fi u(xelx) = — - (X — xq1)

Carnegie
Mellon
University



How about Score SDE => Flow ODE?

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw

Reverse SD

Need to take care of the

Velocity? probability induced by this part!

53

(noise — data) ! :

Carnegie
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Score SDE => Flow ODE via Fokker-Planck PDE

You can sample with

Reverse Score SDE: Probability flow ODE: ,
this ODE now!
dx = [f(x,t) — g(t)*Vy log p;(x)]dt + g(t)dw, dx = [f(xa t) — %Q(t)2vx logpt(x)]dt,
Forward SDE: Continuity equation:
dx = f(x,t)dt + g(t)dw 0:p:(x) = —div(vt(x)pt(x))

= —div(f(x, )p.(x)) +%g(t)2diV(pt(x)Vx log p¢ (%))
Fokker-Planck PDE of the forward SDE: = —div(f(x, )p.(x)) +% 9(®2div(V,p, (x))

0 (x) = —div(f (x, )pe(x)) + ég ()% Ay (x) = —div(f(x, Op(x)) + 1g(t)zA Pe(x)
= , t 2 xrt

Carnegie

_ . Mellon
___Same PDE for d,p,(x) <=> Marginals p,(x) are the same! University



Density estimation with flow matching

dx;
o v(xt, t)

1
l0gP: () = logpo(o) — | div(v(2,0)de
0

55
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Density estimation with diffusion Attempt 1: ELBO

log pg (xo) = log [ pe(xo.r)dxy.r

Po (XO:T)

q(x1.71%0)
pe(xo.7)

q(xy.71x0)
po(xo.7)

q(xl:Tle)

= logf q(x1.71%0) dxy.r

]
]

- lOgECI(XLTPCo)[

= EQ(xl:Tle) [log

=> Just use the loss function as an estimation of the density

Lsimple(g) — Et,xo,e [HE — 69(@}{0 + V1 — aq€, t)||2]

Carnegie
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Density estimation with diffusion Attempt 2: PF ODE

dx;

e = VDT g [0 - Lo Vatosmo]at

1
Xy = x4 —j v(X;, 7)dt
t

1
l0gP: () = logpo(o) — | div(v(,,0)dr
0

Carnegie
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So far we have seen a bunch of generative models...

In general, we can roughly categorize generative models into the following categories

+ Likelihood Based: Autoregressive models, variational autoencoders (VAE), Same
normalizing flow, energy-based models (EBM), diffusion models <= 7 thing!
« Likelihood Free: Generative adversartarmietworks (GAN), score-based models,
k

flow matching

Random Noise .A.

€ ~ p(e)
Directly sampling from P(X) is usually hard because they are usuaIIy complicated! But Carnegle
Mellon
University

sampling from a simpler distribution (eg. a Gaussian) is easy!
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We have gone through all the basics! 5

Starting from next week, we will be exploring different options to improve diffusion

and flow matching models

« The design space of diffusion models (i.e. what knobs can we tune to make the
models better)

« How to make generation faster (through training and with no additional training)

« How to make the generation more controllable (through training and with no

additional training)

Carnegie
Mellon
University
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