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Housekeeping Announcements

« Homework 1 is out! https://kellyyutonghe.github.io/10799526/homework/
* Q6 (Alternative Parameterization) is now an optional extra credit question!
 Due date: 1/24 Sat, Late Due date: 1/26 Mon
* Training models takes time! Start early!

« Office Hours are announced:
* Kellyis hosting OH

* In-person: Wednesdays 1:00 PM - 2:00 PM, Gates 8th Floor common
area near the printer

* Virtual: Fridays 11:00 AM - 12:00 PM, Discord

* Krish is hosting OH Tuesdays 4:00 PM - 5:00 PM, Gates 8th Floor common
area near the printer

* Extra OH this week: Friday 3 - 4 PM same location Carnegie
Mellon

_ « We shall have our Quiz 2 next class (1/22 Thurs University


https://kellyyutonghe.github.io/10799S26/homework/

Previously on diffusion models...

ONE DOES NOT S#MP[Y
1 - ré
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TURN NOISE INTO DATA
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Diffusion’s way to turn noise into data

Forward process
(adding noise)

Reserve process
(denoising)
Carnegie

Mellon
University

Cat stolen from Chieh-Hsin (Jesse) Lai



Diffusion’s forward process

q(xelxe_1) = NG/ 1= Bexe—1,Bel)
Xt =+ 1—Bexe—q + \/Ee, e~N(0,I)

Dwétanxo X4 Xy X3 Noise x,
t = t=1 t=2 t=3 t=4=T
\ / ar=1- ﬁt
t
q(x¢lxo) = N @xo, (1 — a,)I) ar = 1_[ s Carnegie
Xe = Ja@xo +/1—ae,  €e~N(0,I) o Mellon
University

Cat stolen from Chieh-Hsin (Jesse) Lai



Diffusion’s reverse process

p(x—1lxt) = N(ug (x4, 1), Zg (x4, 1)) BACKWAR
xe = pg(xe, t) + Co(xy, t)e
e~N(0,I), Cg(x;, t)Colx,, )T = Zg(xg, t)

X5 X3 Noise x,
t=20 t=1 t=2 t=3 t=4=T
If we fix the variance

Training: |le — |’
po(xe—11xt) = N(ug(xg, ), 021) g |le — €g(x, t)

=>
In addition, we can also write the mean Sampling: x,_; = LYy — Bt_ eg(x,t) | + o€
w.r.t. the noise prediction g E QU Ctarnegi;
1 p
po(xe, t) = ﬁ(xt —ﬁée(% t)) Easier to train! Mellon
: - University

Cat stolen from Chieh-Hsin (Jesse) Laj, GIF from Star Trek (1966)



So far we have seen a bunch of generative models...

In general, we can roughly categorize generative models into the following categories

+ Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM)

 Likelihood Free: Generative adversarial networks (GAN)

al

Random Noise | Sample
€ ~ p(e) — = g(e)

Directly sampling from P(X) is usually hard because they are usuaIIy complicated! But Carnegle

sampling from a simpler distribution (eg. a Gaussian) is easy! Mellon
University



Two more generative models

In general, we can roughly categorize generative models into the following categories

+ Likelihood Based: Autoregressive models B4, variational autoencoders (VAE) 4,

normalizing flow'®, energy-based models (EBM) ?

Flow Inverse /
Normalizing flows: X fx) - Z | F(2) ~ X
1
pe(x) = exp(fy(x))
Energy-based models: [ exp(fo(x))dx .
. Carnegie
Partition function = 0) exp(fy(x)) Me!lon '
- University

Image from Lilian Weng https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Likelihood is difficult to calculate

« Autoregressive models: you need to break everything up by chain rule and

calculate components one by one
« VAEs: you are still using a surrogated loss (ELBO) after all the hard math

« Normalizing flows: need weird architectures to make sure everything is invertible

Flow Inverse /
Normalizing flows: X i) T f =)

Y
N

Carnegie
Mellon
University




11

Likelihood is difficult to calculate

« Autoregressive models: you need to break everything up by chain rule and

calculate components one by one
« VAEs: you are still using a surrogated loss (ELBO) after all the hard math
« Normalizing flows: need weird architectures to make sure everything is invertible

« EBMs: partition function is generally intractable

_ 1
Energy-based models: Po() = oo as SXP(fo(0)

. Carnegie
Partition function = 0) exp(fy(x)) %e!lon ity
niversi




Likelihood is difficult to calculate - Let's go =
likelihood free?

« Likelihood Free: Generative adversarial networks (GAN)

=>very unstable & suffers from mode collapse

@ Theorem (informal): If the generator updates are made in function
space and discriminator is optimal at every step, then the generator is

guaranteed to converge to the data distribution @ Intuitively, this refers to the phenomena where the generator of a

@ Unrealistic assumptions! “ "
@ In practice, the generator and discriminator loss keeps oscillating GAN coIIapses to one or few samples (dUbbed as "modes )

during GAN training

@ GANs are notorious for suffering from mode collapse

Source: Mirantha Jayathilaka

@ No robust stopping criteria in practice (unlike MLE) Arjovsky et al., 2017

University
Figures from Stefano Ermon Stanford CS 236



Likelihood is difficult to calculate - Let’s go
likelihood free?

Likelihood Free: Generative adversarial networks (GAN)

=>very unstable & suffers from mode collapse

Better way to avoid directly calculating the likelihood?

13
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If we just want to sample...

Do we really need pg(x) = pgara(x) to sample from the model?

« Idea: Stochastic gradient descent (or | guess ascent) to maximize log likelihood

in the data space

NOTENAMATATA A A A R | A 4 4 Y 2

\ SRR TR A A R R A A s

+ Sowe only need V,1og pagrq(x) {ly === . ‘
Y Sasmdddadds r.
AV b T e
N G T T R
B f (0, A, 5 A
‘i"""'llfdllllb\‘
Phi et
, LA Tt i
score function L e uio s e s A BALE MY
CU o A R IR
S m e AN
~<<<~-0—<—<—\‘§§ .
<iiix=-\l  Carnegie
L T T T S N e \ Mellon
- University

Figure from Yang Song https://yang-song.net/blog/2021/score/



https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Score-based Models

Now we just need to train a model to estimate the score function

So (x) = Vyilogpaara(x)

This can be done by minimizing an L2

2
Ex~pdata(x) [| |Vx log pdata(x) < 50 (X)l | ]

This is nice because

« No more intractable partition function Fisher divergence

« No more adversarial training

« No more weird architecture Carnegie

« No breaking up with chain rule => can generate everything all at once MB!IOI’I ]
University



How to train your score model?

But how to do get this ground truth score V, logpgaia(%)?

Turns out you don't have to!

2
Ex~pdata(x)[||vx log Paata(x) — sg (X)ll ]

= Ex-paacato [T05308 92060 O | + Ex-pageatn 15001 ]
constant w.r.t. 6 —

- 2Ex~pdata(x) [(Vxlog Paata(x) , 56(x))]

Because ||x — yI|* = (x — y,x — y) = (x, %) + (,9) — 2(x, y)

16
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How to train your score model?

2
Ex~pdata(x)[||vx log Paqata(x) — sg (x)ll |

2
= Ex~Pdata(x) [“59 (x)” ] - 2Ex~pdata(x) [(V, log Paata(x),s9(x))] + C

Ex~pdata(x) (Vi 10gPaara(x),s9(0))] = f Paata(X)(Vy 108 Daqra(x) , sg(x))dx

vx ata
= f pdata(x) < pdp:t:(i;) Y (X)> dx
= f<vxpdata(x);59(x))dx
Carnegie
Mellon

University
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How to train your score model?

Ex~pdata(x) [(VxlogPaara(x),s9(x))] = f (VyPaata(x),sg(x))dx

Integration by parts and assume that the boundary vanishes, then we can get

9s9(x) (a)
aX(d)

0sg(x)
fpdata(x) 2d aex )(d) dx = — EX~pdata(x) [Xa |

= - Ex“'pdata(x) [trUSH (X))]

trace of Jacobian
Carnegie

Mellon
University
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Score matching loss

2
Exmpiara () [l |V log Paqra(x) — sg(x)l | ]

2
= Ex~29data(x) [“Se(x)ll ] - 2Ex~'pdata(x) [(V, logpdata(x) ,Sg(x))] + C

= Ex-paaca |150CI|"] + 2Ecp a0 [ (U5, 0)] + €

L(6) = %Ex'”pdata(x) [“S@ (x)”z] t Ex~paata) [tr (ISB(X))]

4

No need for the ground Carnegie
truth score! Mellon
- University

Aapo Hyvdrinen. “Estimation of Non-Normalized Statistical Models by Score Matching”. IMLR 2005. https:/j



https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf

20

Score matching loss

L0 = Ee g 50+ Eepi [0, 0)]

N
2l )
i=1

L. N Trace of a Jacobian is very
J.f P x\ .
O o very expensive to calculate!
‘\"\“K3 J — /r{
‘a - !/f
\ ?«W/ Carnegie
— Mellon

University



Denoising score matching

qo(X | x)

Perturbation
distribution/kernel

. pdata(x) X ~ o (i)
Data Noise-perturbed
distribution data distribution

2
Now Ex~pdata(x)[||vx 10g Paata(x) — s (x)||" ] becomes

1 i i :
S, bopanolS0(R) — Vlogao (% | x)[3].  jinegic
- University

Pascal Vincent. “A Connection Between Score Matching and Denoising Autoencoders”. 2011. https.



https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf

st . . g% | x) L=
Denoising score matchlng ' >

Perturbation
distribution/kernel

5 X ~ pdata(x) X ~ 9o (i)
_ Data Noise-perturbed
Now Ex~pdata(x) [| |V, log pdata(x) S (x)ll | becomes distribution d:tlzedizjri;:tif;n

1

§Eqa(iIX)pdata(X)[”SG (X) — Vxlog g (X | X)Hgl

If ¥ = x + € for e~N(0,52I), then

1 —illf—xllz
qo_(flx) — 3 e 202
(2m)204
V, log g, (%lx) == (x — %) Carnegie
x g o2 Mellon
- University

Figure from Stefano Ermon Stanford CS 236
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Sampling with your score model - Langevin Dynamics

Once we have a trained score model, we can do “gradient ascent” in the data space

to get a sample:
1. Firstdraw from an easier-to-sample prior distribution xy~m(x),.e.g. N(0,1)

2. Then with small step size n, large number of steps T and z,~N (0, 1), iterate

Xer1 = Xp + NV, logp(xe) ++/2n2;

—

Can swap with the Exploration

learned model sy (x,) Carnegie

Mellon
University



Langevin Dynamics
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Figure from Yang Song https://yang-song.net/blog/2021/score/
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Score-based model pipeline
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| —

Langevin
dynamics

New samples

Carnegie
Mellon
University
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But does this actually work?
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Pitfall 1: The manifold hypothesis

The score is only properly defined in the whole data space, if data resides in a lower
dimensional manifold (i.e. some area of the data space will have no support), then the
score can blow up (+o gradient) and the score estimation is not consistent any more

-6.4e+6
-6.6e+6

lerd 6.80+6

SSM Loss

-2e+9 -Te+b

-3e+9 -7.2e+6

0O 10k 20k 30k 40k 50k 0O 10k 20k 30k 40k 50k
# of lterations # of lterations

Figure 1: Left: Sliced score matching (SSM) loss
w.r.t. iterations. No noise is added to data. Right: Carnegie
Same but data are perturbed with A/(0,0.0001). Mellon

- University
Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. Neur!PS 2019. https://arxiv.org/pdf/1907.05600.pdf



https://arxiv.org/pdf/1907.05600.pdf
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Pitfall 2: Score in low density region is inaccurate

Even when we do have full support data space, the score estimation is inaccurate in
the low density regions
And our initial sample is very likely to be in those low density regions!!!

Data scores Estimated scores

Data density
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ccccccc

university

Figure from Yang Song https://yang-song.net/blog/2021/score/
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Pitfall 3: Gradient cannot distinguish high density
from higher density

Even in high density region, we can still get inaccurate sample distributions

8

6

i.i.d samples

Langevin dynamics samples

2,
o
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Figure from Yang Song https://yang-song.net/blog/2021/score/
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Is it possible to solve these problem all at once?

« Because the data often lies in a lower dimensional

manifold, the score can blow up and the score

0
estimation can be inconsistent in the ambient space ‘

« The score estimation in low density region is often ——

—

inaccurate (> p—

.

« Evenin high density region, we can still get 3
inaccurate sample distribution because sometimes

gradient cannot distinguish between high density ]
Carnegie

v.s. higher density %ellon
niversity
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Is it possible to solve these problem all at once?

« Because the data often lies in a lower dimensional
manifold, the score can blow up and the score

estimation can be inconsistent in the ambient space

« The score estimation in low density region is often

inaccurate

« Evenin high density region, we can still get

inaccurate sample distribution because sometimes

gradient cannot distinguish between high density ]
Carnegie

v.s. higher density %ellon
niversity



To solve all these problems

How about just add noise to the data?

Estimated scores

Perturbed density Perturbed scores
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Ok but, how much noise should we add

Too small

Figure from Stefano Ermon Stanford CS 236

Too large

33
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How about we start big and gradually lower the
noise level?

Carnegie
Mellon
University

Figure from Stefano Ermon Stanford CS 236




Annealed Langevin Dynamics
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Annealed Langevin Dynamics

Algorithm 1 Annealed Langevin dynamics.

Require: {0’2}2 15 €
1: Initialize X
2: fori < 1to L do
3 ;< €-02/02 > a is the step size.
4: fort < 1toT do
5: Draw z; ~ N (0, I)
6 it (-it_l —+ %Sg(it_l,Ui)"‘\/a_iZt
7 end for
8 Xo ¢ X7
9: end for

return X,

Carnegie
Mellon

University
Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. Neur!PS 2019. https://arxiv.org/pdf/1907.05600.pdf
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onditional Score Network (NCSN)

Carnegie
Mellon
ty

Univers
Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. NeurlPS 2019. https.//arxiv.org/pdf/1907.05600.pdf


https://arxiv.org/pdf/1907.05600.pdf
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Noise Conditional Score Network (NCSN)

Network Parameterization: s4(%,,, o;)

Training: Multi-level denoising score matching

2
_ X —Xg
EO'tEx“'pdata(x)Efat"‘pat(faﬂx)[ Sg(xo-t’o-t) + o2 t ]
t
Sampling: Annealed Langevin Dynamics Carnegie
Mellon
- University

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. Neur!PS 2019. https://arxiv.org/pdf/1907.05600.pdf


https://arxiv.org/pdf/1907.05600.pdf

Hold up, wait a minute, doesn’t this look 5
familiar? B L

Diffusion
(DDPM)

X3 Noise x,

Score-based
model

(NCSN)
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Spot the difference: DDPM v.s. NCSN 0

~_

NCSN DDPM
Xi+1|X; Derive as x;1.1 = x; + JfH — aize Define as x;11 = /1 — 8;x; + /(i€
X;|x Define as x; =x+ 0, € Derive as x; = a;x +1/1 — a; €
Pprior N(Oa J%I) N(O: I)

2
Loss  Eipy,00Eenn(on) [H%(Xiaﬂi) + iM BiEpqaia o) Ee~n(0,1) [||€¢(Xv:a’i) - 6”3}

Samolin Apply Langevin per layer; Traversing the Markovian chain with
pHng use output to initialize the next Ppx (Xi—1]%;)
Carnegie
Mellon
- University

Lai et al. “The Principles of Diffusion Models”. 2025. https.//arxiv.org/pdf/2510.21890#page=89.12


https://arxiv.org/pdf/2510.21890#page=89.12
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Spot the difference: DDPM v.s. NCSN

NCSN DDPM
Xi+1|X; Derive as x;1.1 = x; + f+1 Define as x;11 = /1 — 8;x; + /(i€
X;|x Define as X; :@-F‘e Derive as x; =la;x +4/1 — c_r,:'e

Pprior 0' N(O, I

c o . 2]

Loss @Emmo,n U’Srp(xiaffEﬂi EiEp 10 () Eenn(0,1) [H%(Xn’b) — €ll3]

. Apply Langevin per layer; Traversing the Markovian chain with

Sampling ers 1s
use output to initialize the next Ppx (Xi—1]%;)

Carnegie
Mellon
University

|

Lai et al. “The Principles of Diffusion Models”. 2025. https.//arxiv.org/pdf/2510.21890#page=89.12



https://arxiv.org/pdf/2510.21890#page=89.12
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Noise parameterization: DDPM v.s. NCSN

First define x; = A;xy + o€ for e~N(0,1)
NCSN: At = 1, Ot = O

_Xt—=Xo __ Xt—AtXg

Ot Ot

DDPM:At=a_t,O't=\/1—a_t

o Xe—aeXy _ Xe—AeXp

€= \ll—a_t Ot

Carnegie
Mellon
University
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Loss function: DDPM v.s. NCSN

First define x; = A;xy + o€ for e~N(0,1)
NCSN: At = 1, Ot = O

_Xt—=Xo __ Xt—AtXg

Ot Ot
DDPM:At =a_t, O-t =\/1 _a_t
_ X~ QeXo _

Xt—AtXo

€= ql—a_t Ot

Loss functions:

2

]

NCSN: EUtEXNPdata(x)E ~N(0,I)[ Sg(xt, O't) +0'it2

1
~ o Ee~po, (el €]

*

sp(xp, 0¢) =

. 2
DDPM: EtExp1aia)Ee~N(o,D) [llfg(xt; t) —e€ || ]

E; (xtr at) = Ee~pt(e|xt) [€]

Carnegie
Mellon
University
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Basically two sides of the same coin

Diffusion
(DDPM)

X3 Noise x,

Score-based
model

(NCSN)

Carnegie
Mellon
University
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What's gonna happen if we have an infinite number
of noise levels?

Carnegie
Mellon
University
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When the number of noise scales goes to infinity

It becomes a continuous-time stochastic process, many of which can be solved by

stochastic differential equations (SDEs)

—— Stochastic process

Carnegie
Mellon
University

Figure from Yang Song https://yang-song.net/blog/2021/score/



https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Infinite noise scales: Forward Process

The forward processes are We can also write them as

NCSN: x,ar = % + f(x, At + g(t)VAte
NCSN: xp 7 = X + \/atz+At — of€

da?2(t)
dt

flxe, t) =0 g(t) =
do?(t)
dt

~ X + Ate

DDPM: x;,5; = x; + f(x;, ) At + g(t)VAte

POPM: Xers =1 = B + VB fOd ==2p0x 9O =B

~ x, — 2 B(Ox At + B Ate C .
arnegie

Mellon
University
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Infinite noise scales: Forward Process

It becomes a continuous-time stochastic process, many of which can be solved by

stochastic differential equations (SDEs)

dx = f(x, t)dt + g(t)dw

—— Stochastic process

Carnegie
Mellon
University

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG 12RRHS


https://openreview.net/pdf?id=PxTIG12RRHS
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Score SDE: Reverse Process w/ infinite noise scales
Forward SDE (data — noise)
@ dx = f(x,t)dt + g(t)dw
- o ) sca:) funtio o o
‘(* dx = [f(x,t) — ¢° (t)&x log p; (x)| dt + g(t)dw

Reverse SDE (noise — data)

Carnegie

Brian D.O. Anderson. “Reverse-time diffusion equation models”. Stochastic Processes and their Applications 1982. Mellon

University
Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https.//openreview.net/ndf2id=PxTIG 12RRHS


https://openreview.net/pdf?id=PxTIG12RRHS
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Score SDE: Training
Literally just score matching with continuous time

1
Ln(39()) = S BinpuimeBxinpn [w(2) 189, t) — Vi log pu(x0)|3]

Lpsm(@;w(-)) =

1

; (4.2.1)
5 Bt Exo By xi/x0) [“’(f) I8¢ (xt,t) — Vix, log pr(x¢[x0) |5 } )

Carnegie
Mellon
University

|

Lai et al. “The Principles of Diffusion Models”. 2025. https.//arxiv.org/pdf/2510.21890#page=89.12



https://arxiv.org/pdf/2510.21890#page=89.12

Score SDE: Sampling

dx = [f(x,¢) — g°(t)se(x, t)|dt + g(t)dw

We can use solvers to solve this differential equation
e.g. Use Euler solver, we can have the sampling process as
1. Sample x; from source distribution
2. Ax « [f(x,t) — g*(t)se(x,t)]At + g(t)4/ |At|z;

X+ X+ Ax

t—t+ At,

where z,~N(0,1)

3. lIterateuntilt =0

51

Carnegie
Mellon
University



DDPM v.s. NCSN => VP SDE v.s. VE SDE

Discrete time:

NCSN: x,a; = x + [, At + g(t)VALe

do?(t)
dt

fOx, ) =0 g(t) =

DDPM: x;,4; = x; + f(x;, )At + g(t)VAte

flret) == B®Ox  g®) =B

VP = Variance Preserving

Continuous time:

VE SDE: dx = f(x,t)dt + g(t)dw

da?(t)
dt

fa,) =0 g(t) =

VP SDE: dx = f(x,t)dt + g(t)dw

52

fret) == B®Ox.  g(®) =B
VE = Vari . Carnegie
= Variance Exploding Mellon

University
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Score SDE

Carnegie
Mellon
University

|

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https.//openreview.net/ndf2id=PxTIG 12RRHS


https://openreview.net/pdf?id=PxTIG12RRHS
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So far we have seen a bunch of generative models...

In general, we can roughly categorize generative models into the following categories

« Likelihood Based: Autoregressive models, variational autoencoders (VAE), Same

normalizing flow, energy-based models (EBM), diffusion models <+ / thing!

 Likelihood Free: Generative adversarial networks (GAN), score-based models

Random Noise . A.

€~ p(e)
Directly sampling from P(X) is usually hard because they are usuaIIy complicated! But Carnegle

sampling from a simpler distribution (eg. a Gaussian) is easy! Mellon
University



55

Generative modeling

Given a set of data {x} and some prior knowledge & assumptions

- Data: samples (e.g. images of bedrooms)

« Prior knowledge & assumptions: parametric form, loss function, optimization, etc
We want to learn a probability distribution pg(x) such that

« Generation: If we sample a new datapoint from pg(x), itd look like a “real” sample

(e.g. looks like a real image of bedroom)

- Density estimation: Given an existing datapoint x, we should be able to assign a

probability to it (probability should be high if x looks “real”) ‘@
Carnegie
- Unsupervised learning: We learn everything by just looking at the data [Mellon
University
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Is there an even simpler way to do the same thing?

o, you can‘tiiThere must}

be anotherway. X

Carnegie
Mellon
University

|
Image from Harry Potter
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