

Carnegie Mellon University

Lecture 4: Score-based Models

Yutong (Kelly) He

10-799 *Diffusion & Flow Matching*, Jan 20th, 2026

Many figures derived from Yang Song's <https://yang-song.net/blog/2021/score/>

Quiz time!

10 minutes

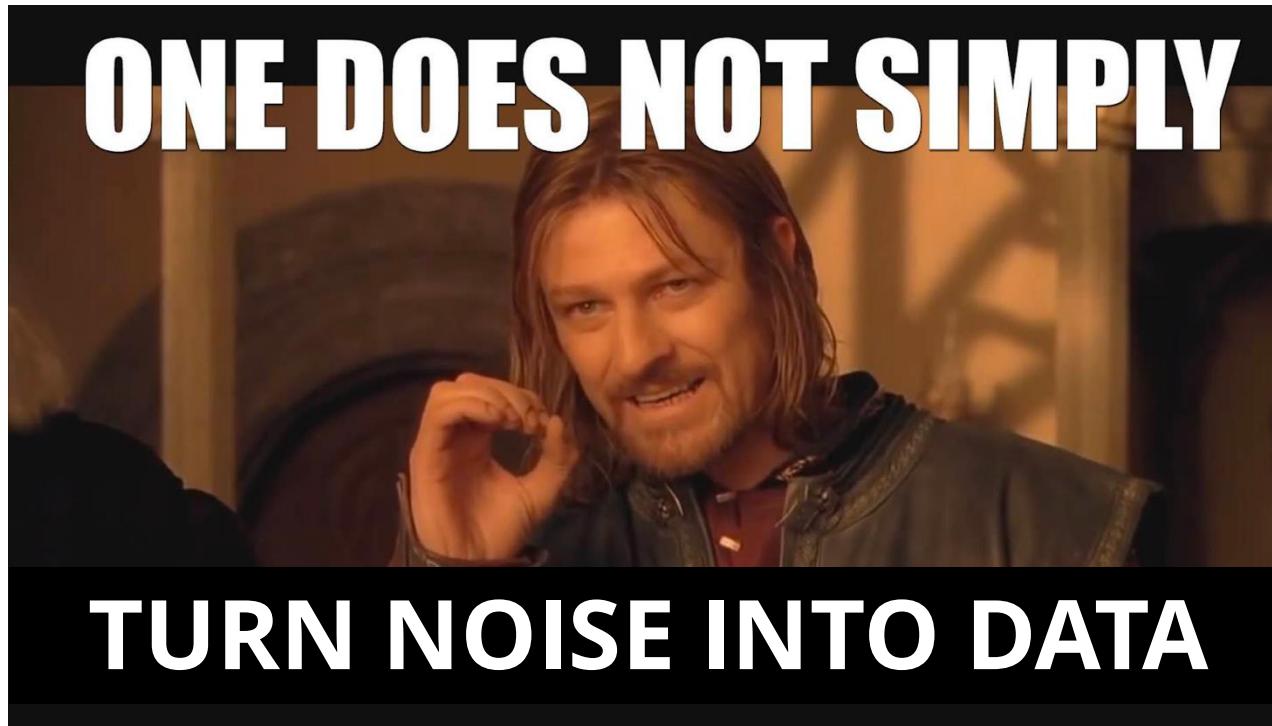
Closed-book

Pen & Paper

Housekeeping Announcements

- Homework 1 is out! <https://kellyyutonghe.github.io/10799S26/homework/>
 - Q6 (Alternative Parameterization) is now an optional extra credit question!
 - Due date: 1/24 Sat, Late Due date: 1/26 Mon
 - Training models takes time! Start early!
- Office Hours are announced:
 - Kelly is hosting OH
 - In-person: Wednesdays 1:00 PM - 2:00 PM, Gates 8th Floor common area near the printer
 - Virtual: Fridays 11:00 AM - 12:00 PM, Discord
 - Krish is hosting OH Tuesdays 4:00 PM - 5:00 PM, Gates 8th Floor common area near the printer
 - Extra OH this week: Friday 3 - 4 PM same location
- We shall have our Quiz 2 next class (1/22 Thurs)

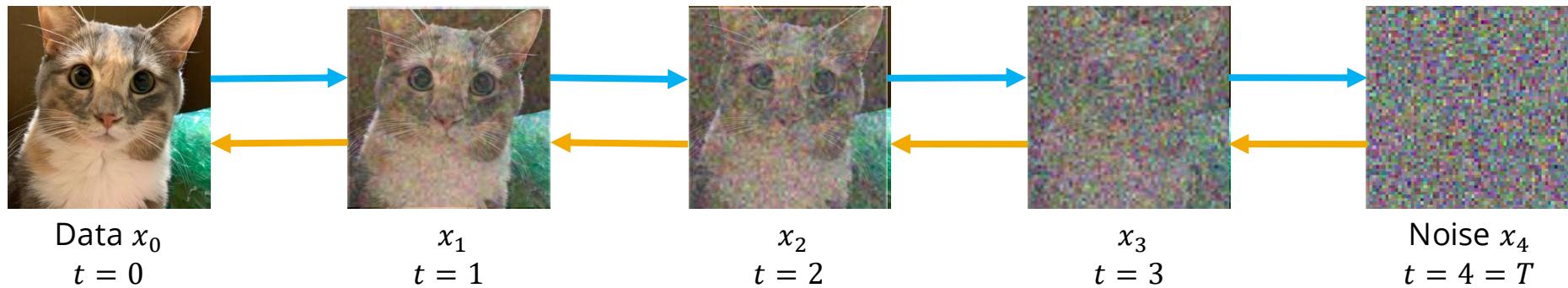
Previously on diffusion models...



Carnegie
Mellon
University

Diffusion's way to turn noise into data

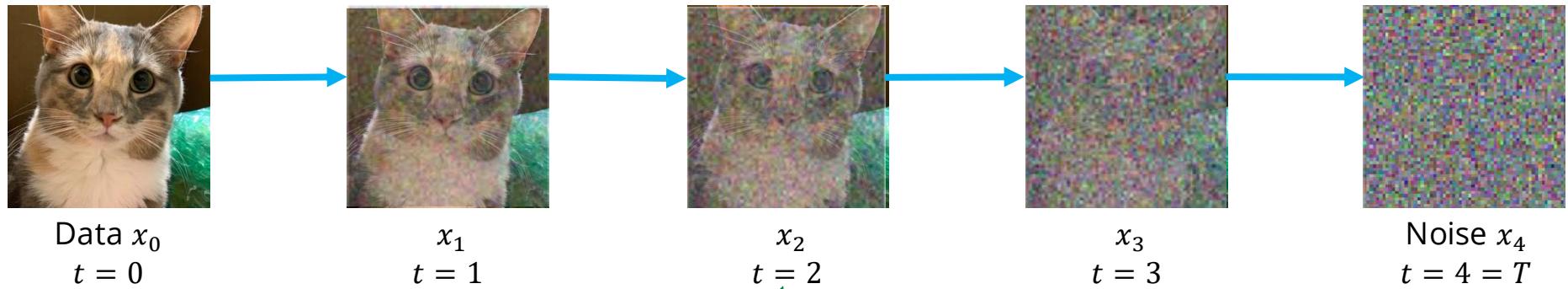
Forward process
(adding noise)



Reserve process
(denoising)

Diffusion's forward process

$$q(x_t|x_{t-1}) = N(\sqrt{1-\beta_t}x_{t-1}, \beta_t I)$$
$$x_t = \sqrt{1-\beta_t}x_{t-1} + \sqrt{\beta_t}\epsilon, \quad \epsilon \sim N(0, I)$$



$$q(x_t|x_0) = N(\sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)I)$$
$$x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon, \quad \epsilon \sim N(0, I)$$

$$\alpha_t = 1 - \beta_t$$
$$\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$$

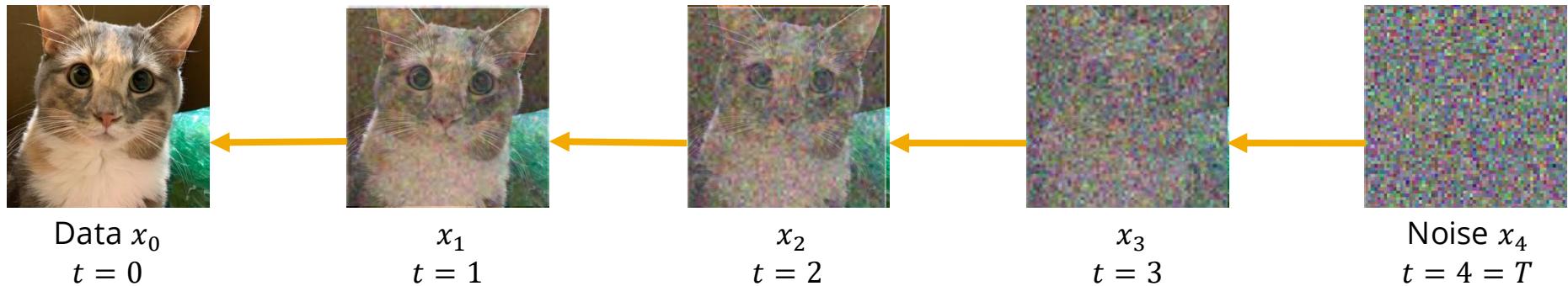
Carnegie
Mellon
University

Diffusion's reverse process

$$p(x_{t-1}|x_t) = N(\mu_\theta(x_t, t), \Sigma_\theta(x_t, t))$$

$$x_t = \mu_\theta(x_t, t) + C_\theta(x_t, t)\epsilon$$

$$\epsilon \sim N(0, I), \quad C_\theta(x_t, t)C_\theta(x_t, t)^\top = \Sigma_\theta(x_t, t)$$



If we fix the variance

$$p_\theta(x_{t-1}|x_t) = N(\mu_\theta(x_t, t), \sigma_t^2 I)$$

In addition, we can also write the mean w.r.t. the noise prediction

$$\mu_\theta(x_t, t) = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t) \right)$$

=>

Training: $\| \epsilon - \epsilon_\theta(x_t, t) \|^2$

$$\text{Sampling: } x_{t-1} = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t) \right) + \sigma_t \epsilon$$

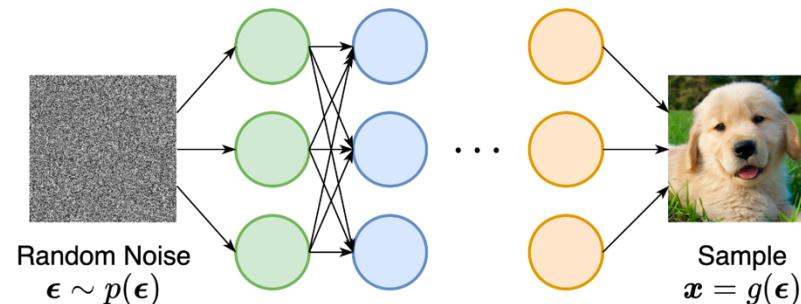
Easier to train!

Carnegie
Mellon
University

So far we have seen a bunch of generative models...

In general, we can roughly categorize generative models into the following categories

- **Likelihood Based:** Autoregressive models, variational autoencoders (VAE), normalizing flow, energy-based models (EBM)
- **Likelihood Free:** Generative adversarial networks (GAN)



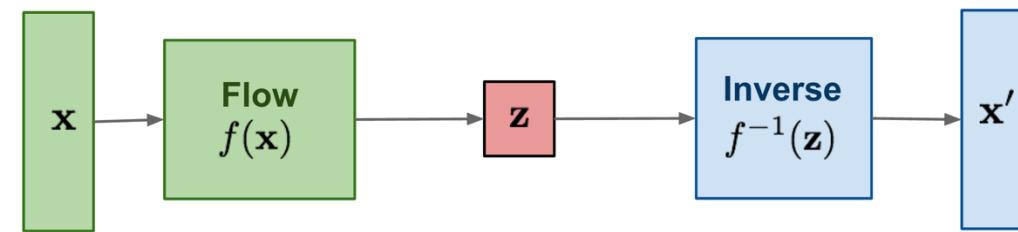
Directly sampling from $P(X)$ is usually hard because they are usually complicated! But **sampling from a simpler distribution** (eg. a Gaussian) is easy!

Two more generative models

In general, we can roughly categorize generative models into the following categories

- **Likelihood Based:** Autoregressive models , variational autoencoders (VAE) , normalizing flow , energy-based models (EBM) ?

Normalizing flows:



Energy-based models:

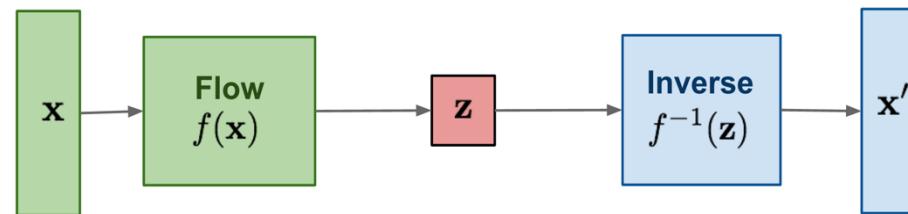
$$p_\theta(x) = \frac{1}{\int \exp(f_\theta(x)) dx} \exp(f_\theta(x))$$

Partition function $\xrightarrow{=} \frac{1}{Z(\theta)} \exp(f_\theta(x))$

Likelihood is difficult to calculate

- **Autoregressive models:** you need to break everything up by chain rule and calculate components **one by one**
- **VAEs:** you are still using a surrogated loss (ELBO) after all the hard math
- **Normalizing flows:** need weird architectures to make sure everything is invertible

Normalizing flows:



Likelihood is difficult to calculate

- **Autoregressive models:** you need to break everything up by chain rule and calculate components **one by one**
- **VAEs:** you are still using a surrogated loss (ELBO) after all the hard math
- **Normalizing flows:** need weird architectures to make sure everything is invertible
- **EBMs:** partition function is generally intractable

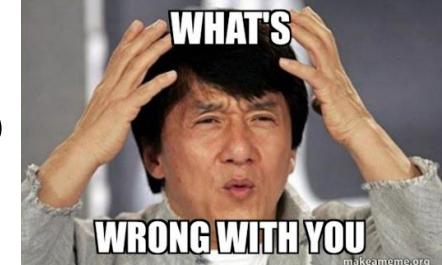
Energy-based models:

$$p_\theta(x) = \frac{1}{\int \exp(f_\theta(x))dx} \exp(f_\theta(x))$$

Partition function

$$\equiv \frac{1}{Z(\theta)} \exp(f_\theta(x))$$

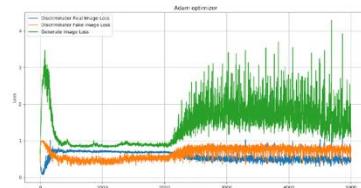
Likelihood is difficult to calculate – Let's go likelihood free?



- **Likelihood Free:** Generative adversarial networks (GAN)

=> very unstable & suffers from mode collapse

- **Theorem (informal):** If the generator updates are made in function space and discriminator is optimal at every step, then the generator is guaranteed to converge to the data distribution
- **Unrealistic assumptions!**
- In practice, the generator and discriminator loss keeps oscillating during GAN training



Source: [Mirantha Jayathilaka](#)

- GANs are notorious for suffering from **mode collapse**
- Intuitively, this refers to the phenomena where the generator of a GAN collapses to one or few samples (dubbed as “modes”)

Arjovsky et al., 2017

- No robust stopping criteria in practice (unlike MLE)

University

Likelihood is difficult to calculate – Let's go likelihood free?

- **Likelihood Free:** Generative adversarial networks (GAN)
=> very unstable & suffers from mode collapse

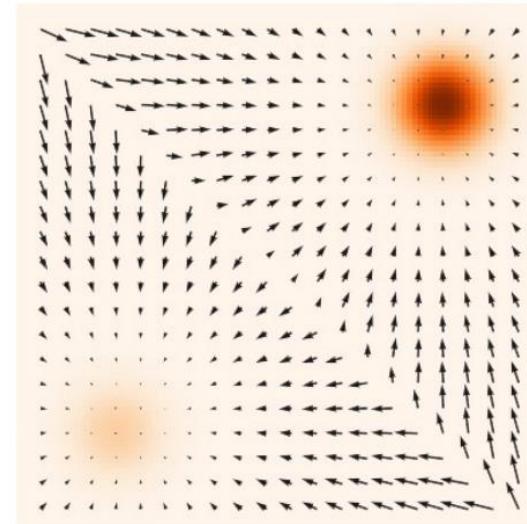
Better way to avoid directly calculating the likelihood?

If we just want to sample...

Do we really need $p_\theta(x) \approx p_{data}(x)$ to **sample** from the model?

- Idea: Stochastic **gradient** descent (or I guess ascent) to maximize **log likelihood** in the **data space**
- So we only need $\nabla_x \log p_{data}(x)$

score function



Score-based Models

Now we just need to train a model to estimate the score function

$$s_\theta(x) \approx \nabla_x \log p_{data}(x)$$

This can be done by minimizing an L2

$$E_{x \sim p_{data}(x)} [\| \nabla_x \log p_{data}(x) - s_\theta(x) \|^2]$$

This is nice because

- No more intractable partition function
- No more adversarial training
- No more weird architecture
- No breaking up with chain rule => can generate everything all at once

Fisher divergence

How to train your score model?

But how to do get this ground truth score $\nabla_x \log p_{data}(x)$?

Turns out you don't have to!

$$\begin{aligned}
& E_{x \sim p_{data}(x)} [\|\nabla_x \log p_{data}(x) - s_\theta(x)\|^2] \\
&= E_{x \sim p_{data}(x)} [\|\nabla_x \log p_{data}(x)\|^2] + E_{x \sim p_{data}(x)} [\|s_\theta(x)\|^2] \\
&\quad - 2E_{x \sim p_{data}(x)} [\langle \nabla_x \log p_{data}(x), s_\theta(x) \rangle]
\end{aligned}$$

constant w.r.t. θ

Because $\|x - y\|^2 = \langle x - y, x - y \rangle = \langle x, x \rangle + \langle y, y \rangle - 2\langle x, y \rangle$

How to train your score model?

$$\begin{aligned}
 & E_{x \sim p_{data}(x)} [\left\| \nabla_x \log p_{data}(x) - s_\theta(x) \right\|^2] \\
 &= E_{x \sim p_{data}(x)} [\left\| s_\theta(x) \right\|^2] - 2E_{x \sim p_{data}(x)} [\langle \nabla_x \log p_{data}(x), s_\theta(x) \rangle] + C \\
 E_{x \sim p_{data}(x)} [\langle \nabla_x \log p_{data}(x), s_\theta(x) \rangle] &= \int p_{data}(x) \langle \nabla_x \log p_{data}(x), s_\theta(x) \rangle dx \\
 &= \int p_{data}(x) \left\langle \frac{\nabla_x p_{data}(x)}{p_{data}(x)}, s_\theta(x) \right\rangle dx \\
 &= \int \langle \nabla_x p_{data}(x), s_\theta(x) \rangle dx
 \end{aligned}$$

How to train your score model?

$$E_{x \sim p_{data}(x)} [\langle \nabla_x \log p_{data}(x), s_\theta(x) \rangle] = \int \langle \nabla_x p_{data}(x), s_\theta(x) \rangle dx$$

Integration by parts and assume that the boundary vanishes, then we can get

$$= - \int p_{data}(x) \sum_d \frac{\partial s_\theta(x)_{(d)}}{\partial x_{(d)}} dx = - E_{x \sim p_{data}(x)} \left[\sum_d \frac{\partial s_\theta(x)_{(d)}}{\partial x_{(d)}} \right]$$

$$= - E_{x \sim p_{data}(x)} [\text{tr}(J_{s_\theta}(x))]$$

trace of Jacobian

Score matching loss

$$\begin{aligned}
 & E_{x \sim p_{data}(x)} [\left\| \nabla_x \log p_{data}(x) - s_{\theta}(x) \right\|^2] \\
 &= E_{x \sim p_{data}(x)} [\left\| s_{\theta}(x) \right\|^2] - 2E_{x \sim p_{data}(x)} [\langle \nabla_x \log p_{data}(x), s_{\theta}(x) \rangle] + C \\
 &= E_{x \sim p_{data}(x)} [\left\| s_{\theta}(x) \right\|^2] + 2E_{x \sim p_{data}(x)} [\text{tr}(J_{s_{\theta}}(x))] + C
 \end{aligned}$$

$$L(\theta) = \frac{1}{2} E_{x \sim p_{data}(x)} [\left\| s_{\theta}(x) \right\|^2] + E_{x \sim p_{data}(x)} [\text{tr}(J_{s_{\theta}}(x))]$$

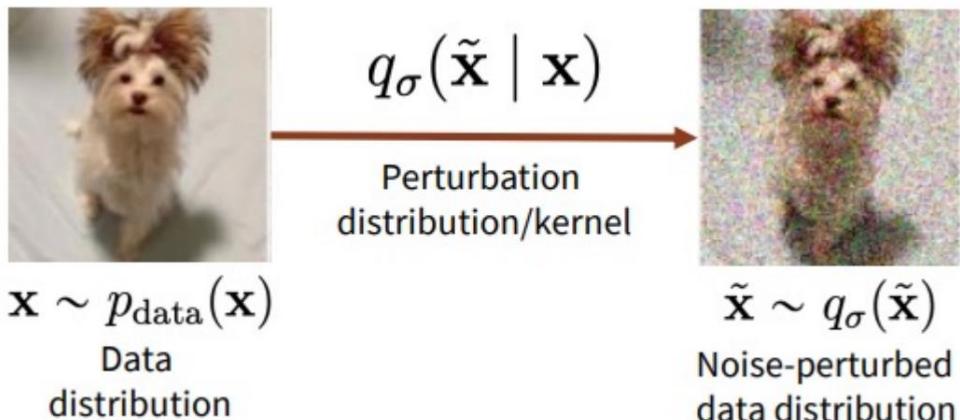
No need for the ground truth score!

Score matching loss

$$\begin{aligned} L(\theta) &= \frac{1}{2} E_{x \sim p_{data}(x)} \left[\left\| s_{\theta}(x) \right\|^2 \right] + E_{x \sim p_{data}(x)} \left[\text{tr} \left(J_{s_{\theta}}(x) \right) \right] \\ &\approx \frac{1}{N} \sum_{i=1}^N \frac{1}{2} \left\| s_{\theta}(x^{(i)}) \right\|^2 + \text{tr} \left(J_{s_{\theta}}(x^{(i)}) \right) \end{aligned}$$

Trace of a Jacobian is very
very expensive to calculate!

Denoising score matching



Now $E_{x \sim p_{\text{data}}(x)}[\|\nabla_x \log p_{\text{data}}(x) - s_{\theta}(x)\|^2]$ becomes

$$\frac{1}{2} \mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})p_{\text{data}}(\mathbf{x})} [\|\mathbf{s}_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})\|_2^2].$$

Denoising score matching

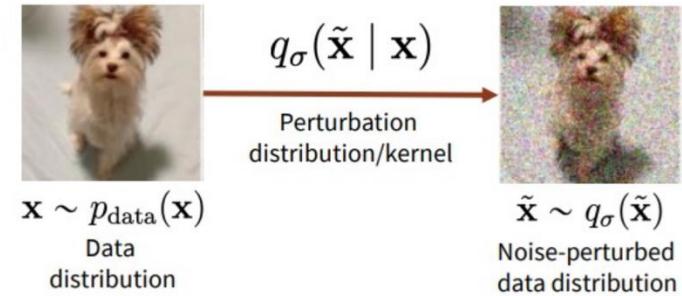
Now $E_{x \sim p_{data}(x)}[\|\nabla_x \log p_{data}(x) - s_\theta(x)\|^2]$ becomes

$$\frac{1}{2} \mathbb{E}_{q_\sigma(\tilde{\mathbf{x}}|\mathbf{x}) p_{data}(\mathbf{x})} [\|\mathbf{s}_\theta(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_\sigma(\tilde{\mathbf{x}} | \mathbf{x})\|_2^2].$$

If $\tilde{x} = x + \epsilon$ for $\epsilon \sim N(0, \sigma^2 I)$, then

$$q_\sigma(\tilde{x}|x) = \frac{1}{(2\pi)^{\frac{d}{2}} \sigma^d} e^{-\frac{1}{2\sigma^2} \|\tilde{x} - x\|^2}$$

$$\nabla_{\tilde{x}} \log q_\sigma(\tilde{x}|x) = \frac{1}{\sigma^2} (x - \tilde{x})$$



Sampling with your score model – Langevin Dynamics

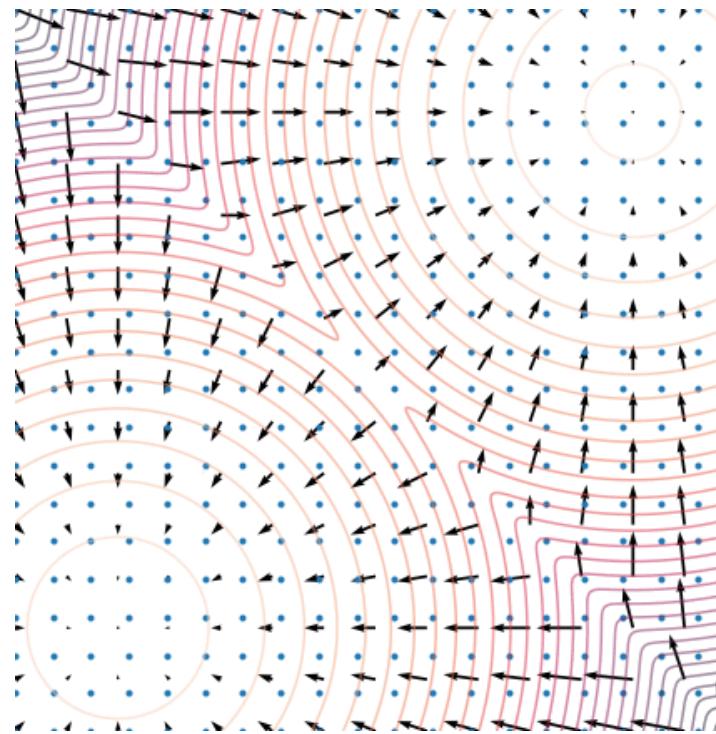
Once we have a trained score model, we can do “gradient ascent” in the data space to get a sample:

1. First draw from an easier-to-sample prior distribution $x_0 \sim \pi(x)$, e.g. $N(0, I)$
2. Then with small step size η , large number of steps T and $z_t \sim N(0, I)$, iterate

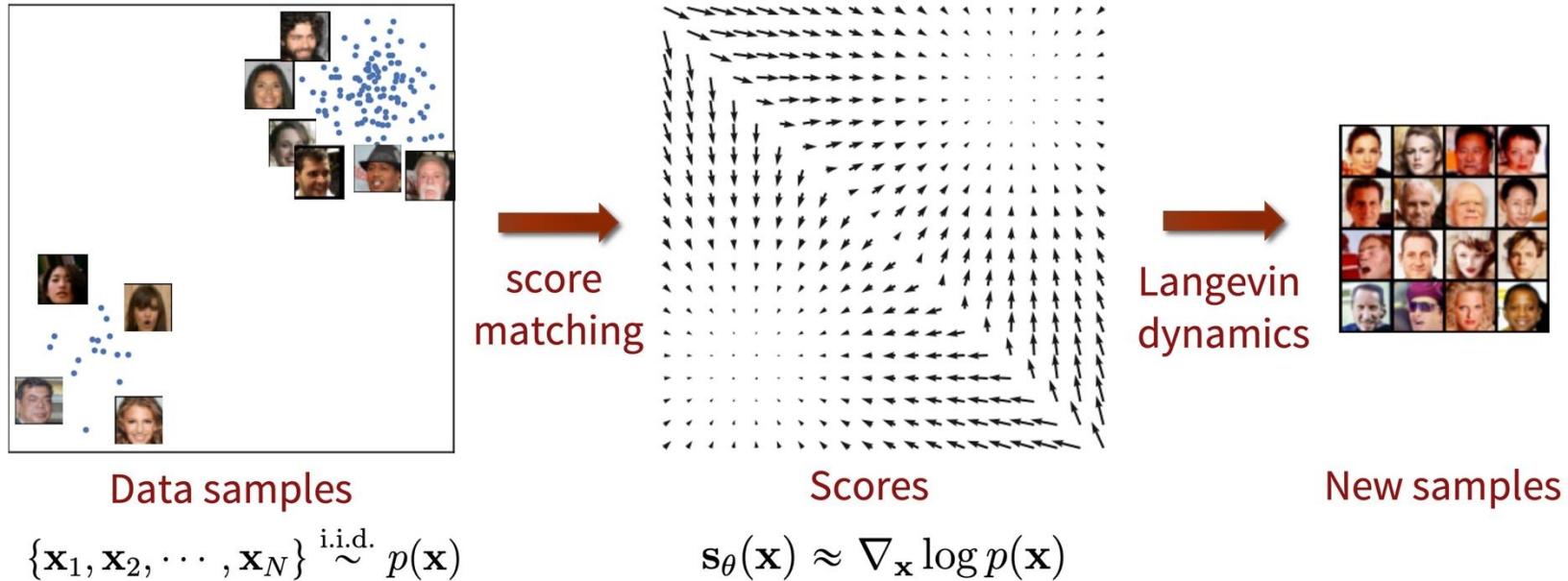
$$x_{t+1} = x_t + \eta \nabla_{x_t} \log p(x_t) + \sqrt{2\eta} z_t$$

Can swap with the learned model $s_\theta(x_t)$
Exploration

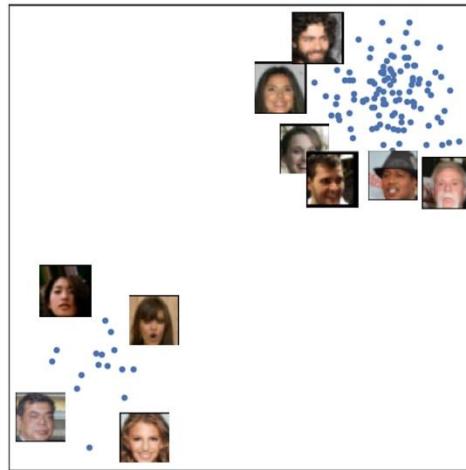
Langevin Dynamics



Score-based model pipeline



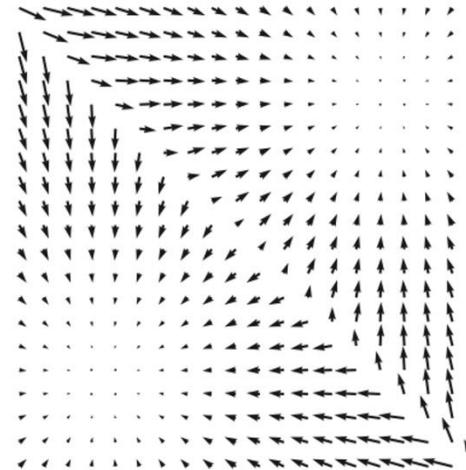
But does this actually work?



Data samples

$$\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\} \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x})$$

score
matching



Scores

$$\mathbf{s}_\theta(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$$

Langevin
dynamics

New samples

Pitfall 1: The manifold hypothesis

The score is only properly defined in the whole data space, if data resides in a lower dimensional manifold (i.e. some area of the data space will have no support), then the score can blow up ($\pm\infty$ gradient) and the score estimation is not consistent any more

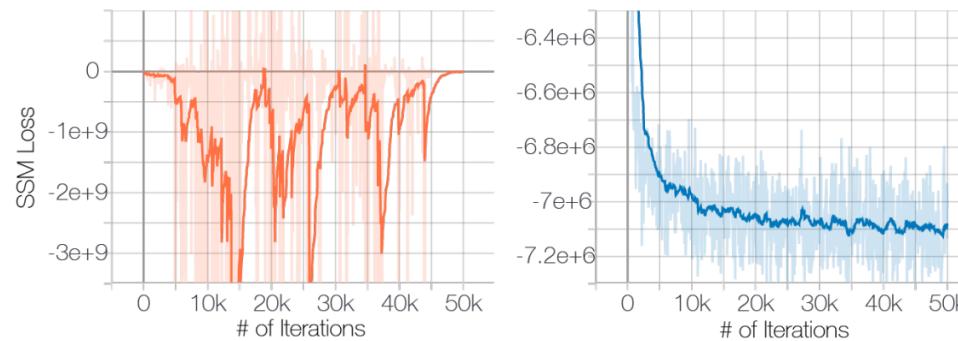
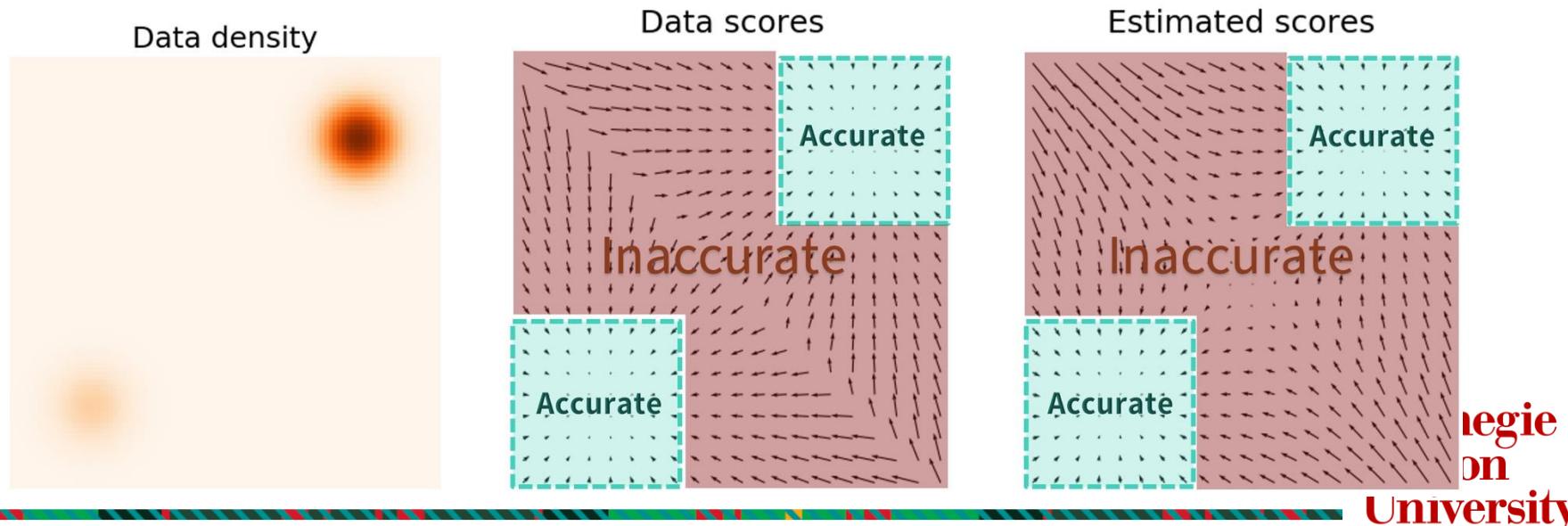


Figure 1: **Left:** Sliced score matching (SSM) loss w.r.t. iterations. No noise is added to data. **Right:** Same but data are perturbed with $\mathcal{N}(0, 0.0001)$.

Pitfall 2: Score in low density region is inaccurate

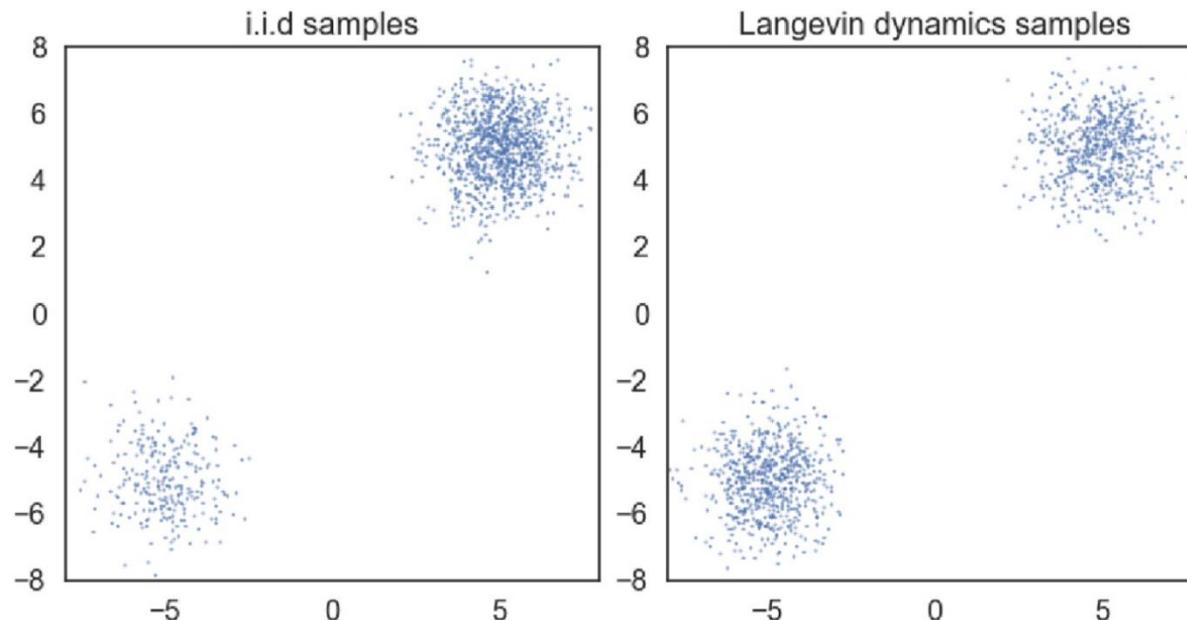
Even when we do have full support data space, the score estimation is inaccurate in the low density regions

And our initial sample is very likely to be in those low density regions!!!



Pitfall 3: Gradient cannot distinguish high density from higher density

Even in high density region, we can still get inaccurate sample distributions



Is it possible to solve these problem all at once?

- Because the data often lies in **a lower dimensional manifold**, the score can blow up and the score estimation can be inconsistent in the ambient space
- The score estimation in **low density** region is often **inaccurate**
- Even in high density region, we can still get inaccurate sample distribution because sometimes **gradient** cannot distinguish between **high density v.s. higher density**

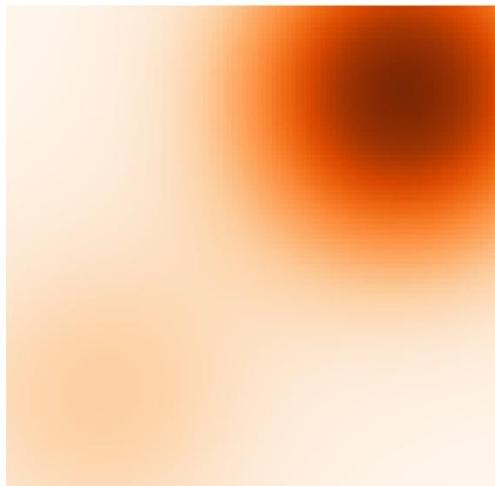
Is it possible to solve these problem all at once?

- Because the data often lies in **a lower dimensional manifold**, the score can blow up and the score estimation can be inconsistent in the ambient space
- The score estimation in **low density** region is often **inaccurate**
- Even in high density region, we can still get inaccurate sample distribution because sometimes **gradient** cannot distinguish between **high density v.s. higher density**

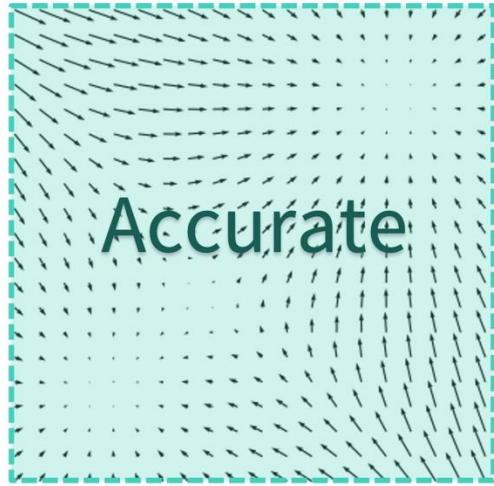
To solve all these problems

How about just add noise to the data?

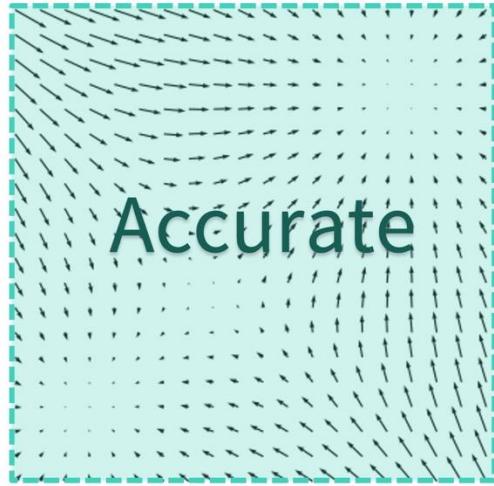
Perturbed density



Perturbed scores

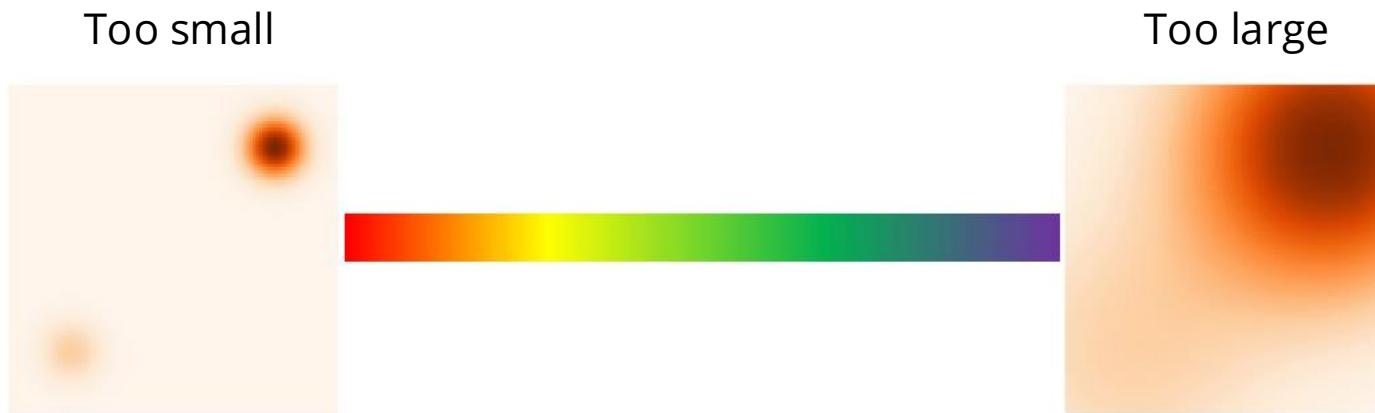


Estimated scores

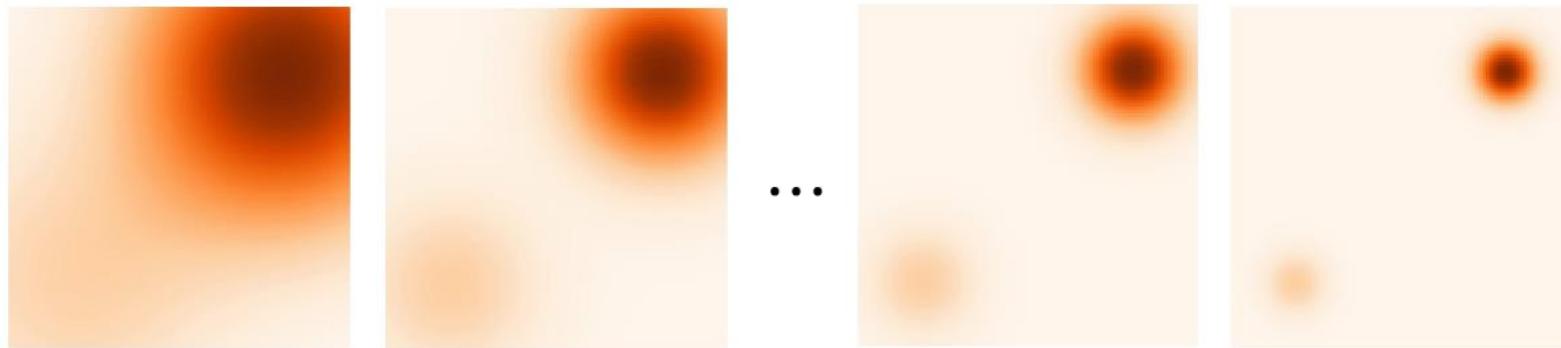


Carnegie
Mellon
University

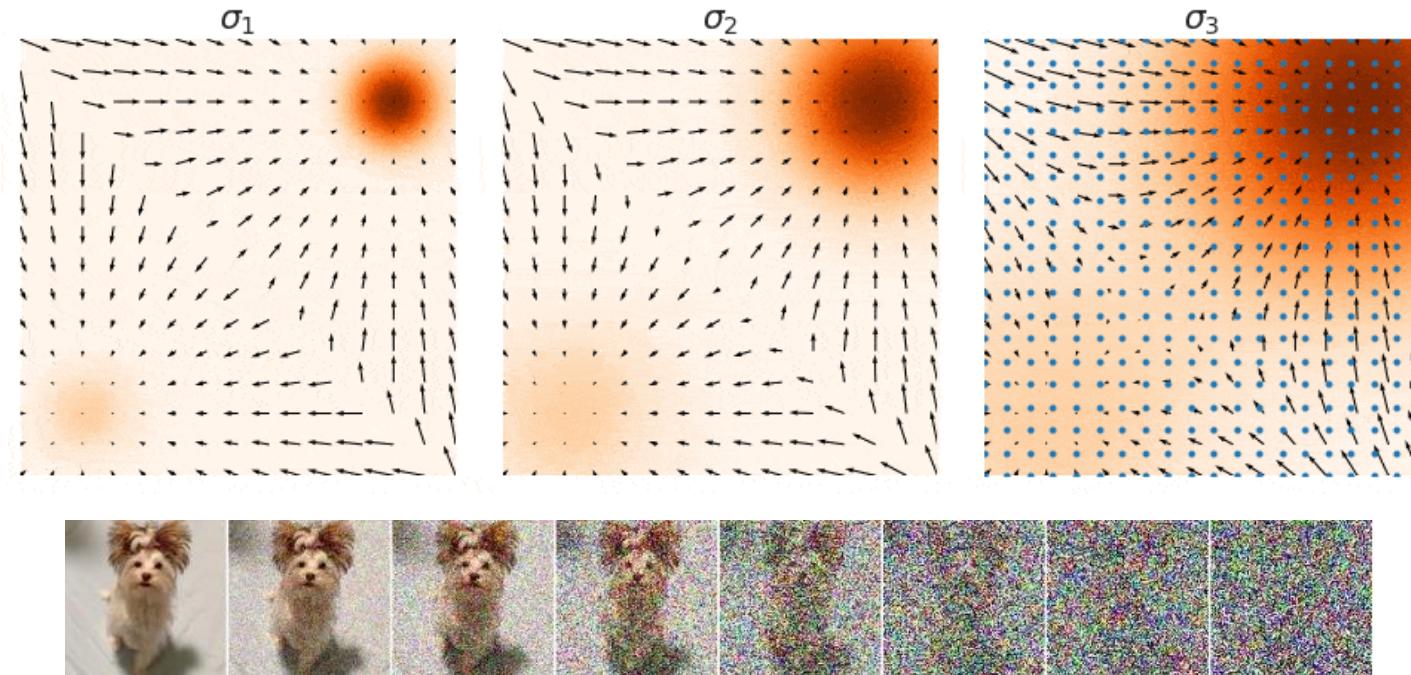
Ok but, how much noise should we add



How about we start big and gradually lower the noise level?



Annealed Langevin Dynamics



Annealed Langevin Dynamics

Algorithm 1 Annealed Langevin dynamics.

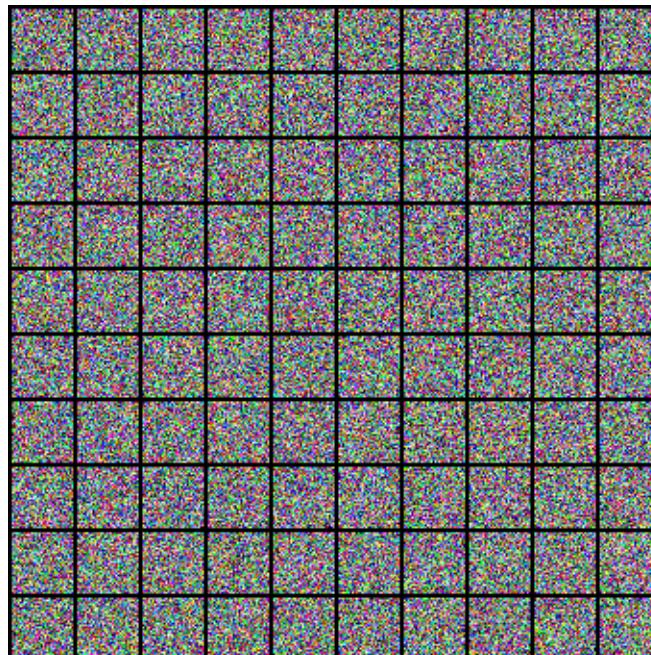
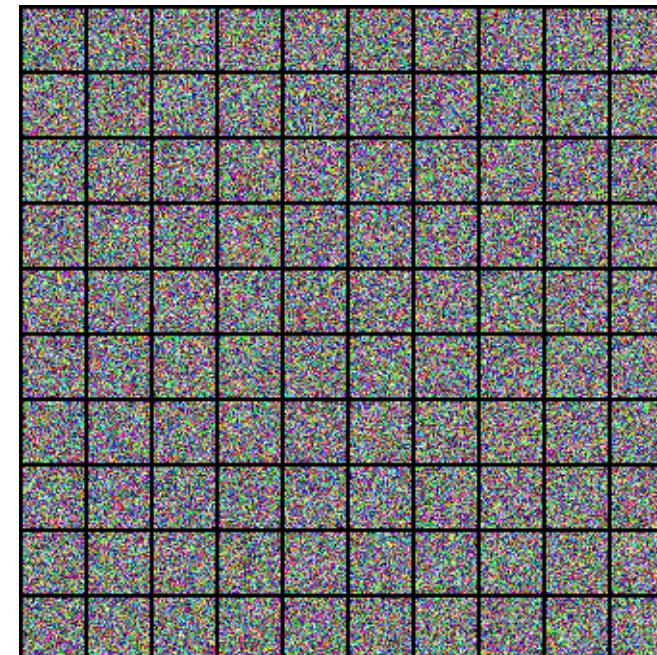
Require: $\{\sigma_i\}_{i=1}^L, \epsilon, T$.

```

1: Initialize  $\tilde{\mathbf{x}}_0$ 
2: for  $i \leftarrow 1$  to  $L$  do
3:    $\alpha_i \leftarrow \epsilon \cdot \sigma_i^2 / \sigma_L^2$        $\triangleright \alpha_i$  is the step size.
4:   for  $t \leftarrow 1$  to  $T$  do
5:     Draw  $\mathbf{z}_t \sim \mathcal{N}(0, I)$ 
6:      $\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\theta}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \mathbf{z}_t$ 
7:   end for
8:    $\tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T$ 
9: end for
return  $\tilde{\mathbf{x}}_T$ 

```

Noise Conditional Score Network (NCSN)



Noise Conditional Score Network (NCSN)

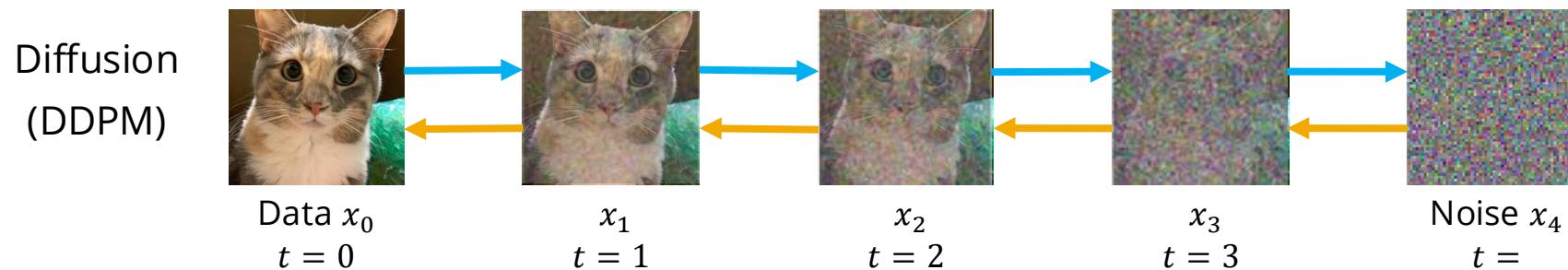
Network Parameterization: $s_\theta(\tilde{x}_{\sigma_t}, \sigma_t)$

Training: Multi-level denoising score matching

$$E_{\sigma_t} E_{x \sim p_{data}(x)} E_{\tilde{x}_{\sigma_t} \sim p_{\sigma_t}(\tilde{x}_{\sigma_t} | x)} \left[\left\| s_\theta(\tilde{x}_{\sigma_t}, \sigma_t) + \frac{x - \tilde{x}_{\sigma_t}}{\sigma_t^2} \right\|^2 \right]$$

Sampling: Annealed Langevin Dynamics

Hold up, wait a minute, doesn't this look familiar?



Score-based model (NCSN)

Spot the difference: DDPM v.s. NCSN

	NCSN	DDPM
$\mathbf{x}_{i+1} \mathbf{x}_i$	Derive as $\mathbf{x}_{i+1} = \mathbf{x}_i + \sqrt{\sigma_{i+1}^2 - \sigma_i^2} \boldsymbol{\epsilon}$	Define as $\mathbf{x}_{i+1} = \sqrt{1 - \beta_i} \mathbf{x}_i + \sqrt{\beta_i} \boldsymbol{\epsilon}$
$\mathbf{x}_i \mathbf{x}$	Define as $\mathbf{x}_i = \mathbf{x} + \sigma_i \boldsymbol{\epsilon}$	Derive as $\mathbf{x}_i = \bar{\alpha}_i \mathbf{x} + \sqrt{1 - \bar{\alpha}_i} \boldsymbol{\epsilon}$
p_{prior}	$\mathcal{N}(\mathbf{0}, \sigma_L^2 \mathbf{I})$	$\mathcal{N}(\mathbf{0}, \mathbf{I})$
Loss	$\mathbb{E}_i \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\ \mathbf{s}_\phi(\mathbf{x}_i, \sigma_i) + \frac{\boldsymbol{\epsilon}}{\sigma_i} \right\ _2^2 \right]$	$\mathbb{E}_i \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\ \boldsymbol{\epsilon}_\phi(\mathbf{x}_i, i) - \boldsymbol{\epsilon} \right\ _2^2 \right]$
Sampling	Apply Langevin per layer; use output to initialize the next	Traversing the Markovian chain with $p_{\phi^\times}(\mathbf{x}_{i-1} \mathbf{x}_i)$

Spot the difference: DDPM v.s. NCSN

	NCSN	DDPM
$\mathbf{x}_{i+1} \mathbf{x}_i$	Derive as $\mathbf{x}_{i+1} = \mathbf{x}_i + \sqrt{\sigma_{i+1}^2 - \sigma_i^2} \epsilon$	Define as $\mathbf{x}_{i+1} = \sqrt{1 - \beta_i} \mathbf{x}_i + \sqrt{\beta_i} \epsilon$
$\mathbf{x}_i \mathbf{x}$	Define as $\mathbf{x}_i = \mathbf{x} + \sigma_i \epsilon$	Derive as $\mathbf{x}_i = \bar{\alpha}_i \mathbf{x} + \sqrt{1 - \bar{\alpha}_i} \epsilon$
p_{prior}	$\mathcal{N}(\mathbf{0}, \sigma_L^2 \mathbf{I})$	$\mathcal{N}(\mathbf{0}, \mathbf{I})$
Loss	$\mathbb{E}_i \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\ \mathbf{s}_\phi(\mathbf{x}_i, \sigma_i) + \frac{\epsilon}{\sigma_i} \right\ _2^2 \right]$	$\mathbb{E}_i \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\ \epsilon_\phi(\mathbf{x}_i, i) - \epsilon \right\ _2^2 \right]$
Sampling	Apply Langevin per layer; use output to initialize the next	Traversing the Markovian chain with $p_{\phi^\times}(\mathbf{x}_{i-1} \mathbf{x}_i)$

Noise parameterization: DDPM v.s. NCSN

First define $x_t = \lambda_t x_0 + \sigma_t \epsilon$ for $\epsilon \sim N(0, I)$

NCSN: $\lambda_t = 1, \sigma_t = \sigma_t$

$$\epsilon = \frac{x_t - x_0}{\sigma_t} = \frac{x_t - \lambda_t x_0}{\sigma_t}$$

DDPM: $\lambda_t = \overline{\alpha_t}, \sigma_t = \sqrt{1 - \overline{\alpha_t}}$

$$\epsilon = \frac{x_t - \overline{\alpha_t} x_0}{\sqrt{1 - \overline{\alpha_t}}} = \frac{x_t - \lambda_t x_0}{\sigma_t}$$

Loss function: DDPM v.s. NCSN

First define $x_t = \lambda_t x_0 + \sigma_t \epsilon$ for $\epsilon \sim N(0, I)$

NCSN: $\lambda_t = 1, \sigma_t = \sigma_t$

$$\epsilon = \frac{x_t - x_0}{\sigma_t} = \frac{x_t - \lambda_t x_0}{\sigma_t}$$

DDPM: $\lambda_t = \bar{\alpha}_t, \sigma_t = \sqrt{1 - \bar{\alpha}_t}$

$$\epsilon = \frac{x_t - \bar{\alpha}_t x_0}{\sqrt{1 - \bar{\alpha}_t}} = \frac{x_t - \lambda_t x_0}{\sigma_t}$$

Loss functions:

NCSN: $E_{\sigma_t} E_{x \sim p_{data}(x)} E_{\epsilon \sim N(0, I)} \left[\left\| s_{\theta}(x_t, \sigma_t) + \frac{\epsilon}{\sigma_t^2} \right\|^2 \right]$

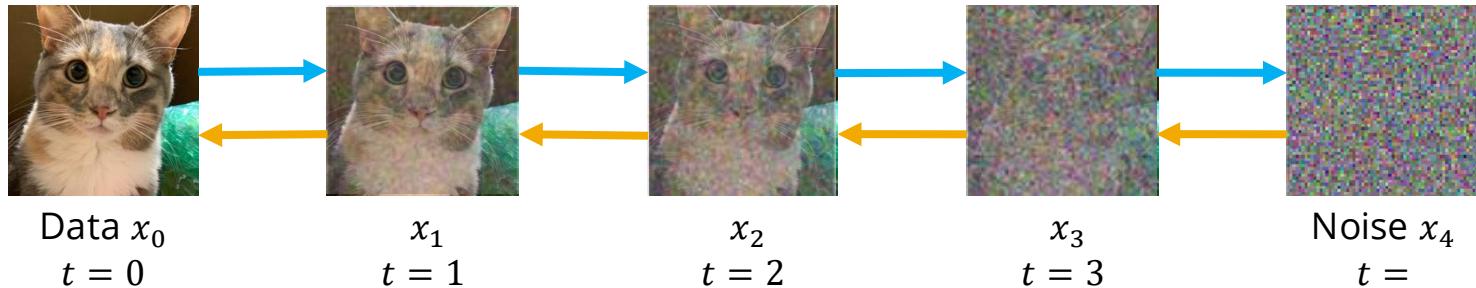
$$s_{\theta}^*(x_t, \sigma_t) = -\frac{1}{\sigma_t} E_{\epsilon \sim p_{\sigma_t}(\epsilon|x_t)} [\epsilon]$$

DDPM: $E_t E_{x \sim p_{data}(x)} E_{\epsilon \sim N(0, I)} [\|\epsilon_{\theta}(x_t, t) - \epsilon\|^2]$

$$\epsilon_{\theta}^*(x_t, \sigma_t) = E_{\epsilon \sim p_t(\epsilon|x_t)} [\epsilon]$$

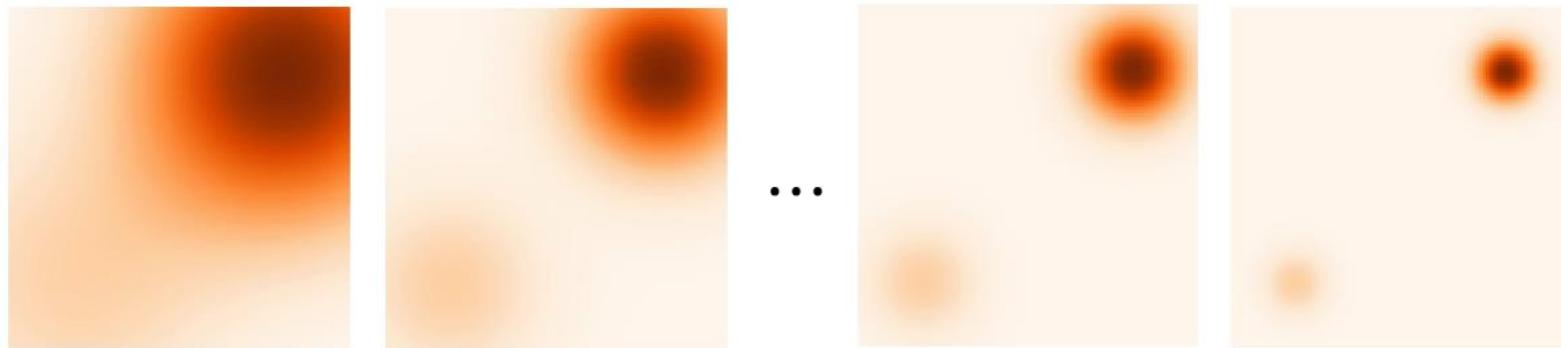
Basically two sides of the same coin

Diffusion
(DDPM)



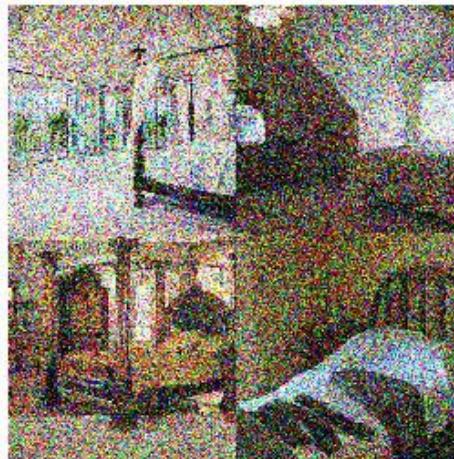
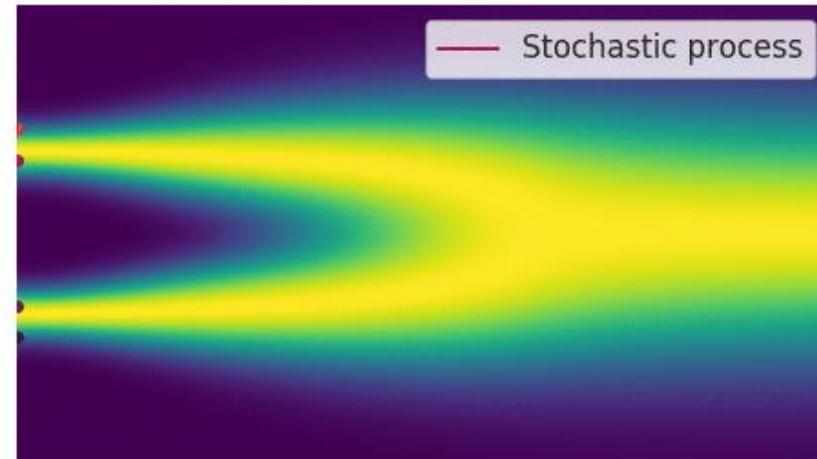
Score-based
model
(NCSN)

What's gonna happen if we have an infinite number of noise levels?



When the number of noise scales goes to infinity

It becomes a **continuous-time stochastic process**, many of which can be solved by **stochastic differential equations** (SDEs)



Infinite noise scales: Forward Process

The forward processes are

$$\mathbf{NCSN: } x_{t+\Delta t} = x_t + \sqrt{\sigma_{t+\Delta t}^2 - \sigma_t^2} \epsilon$$

$$\approx x_t + \sqrt{\frac{d\sigma^2(t)}{dt} \Delta t} \epsilon$$

$$\mathbf{DDPM: } x_{t+1} = \sqrt{1 - \beta_t} x_t + \sqrt{\beta_{t+1}} \epsilon$$

$$\approx x_t - \frac{1}{2} \beta(t) x_t \Delta t + \sqrt{\beta_t \Delta t} \epsilon$$

We can also write them as

$$\mathbf{NCSN: } x_{t+\Delta t} = x_t + f(x_t, t) \Delta t + g(t) \sqrt{\Delta t} \epsilon$$

$$f(x_t, t) = 0 \quad g(t) = \sqrt{\frac{d\sigma^2(t)}{dt}}$$

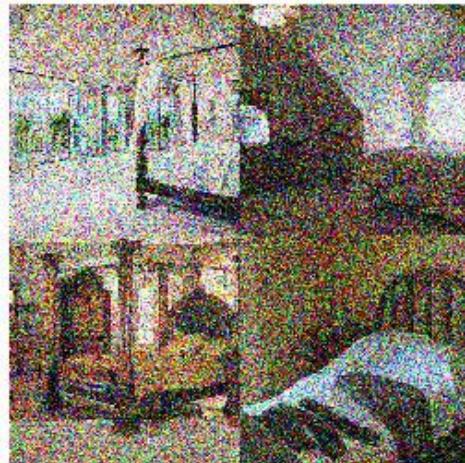
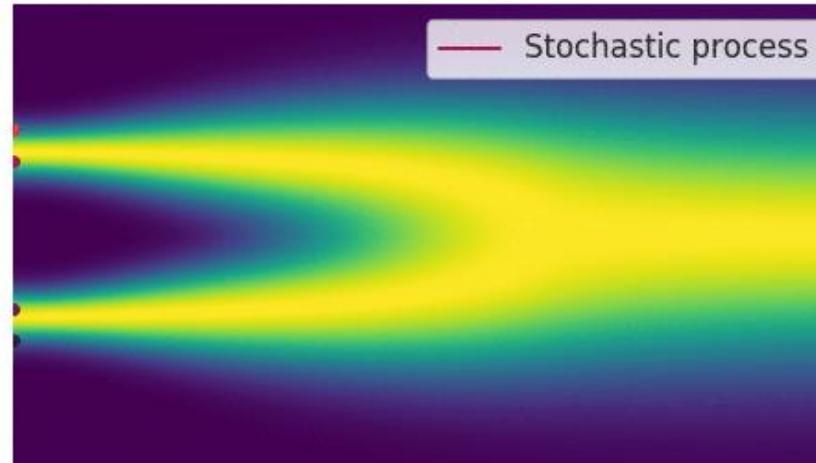
$$\mathbf{DDPM: } x_{t+\Delta t} = x_t + f(x_t, t) \Delta t + g(t) \sqrt{\Delta t} \epsilon$$

$$f(x_t, t) = -\frac{1}{2} \beta(t) x_t \quad g(t) = \sqrt{\beta_t}$$

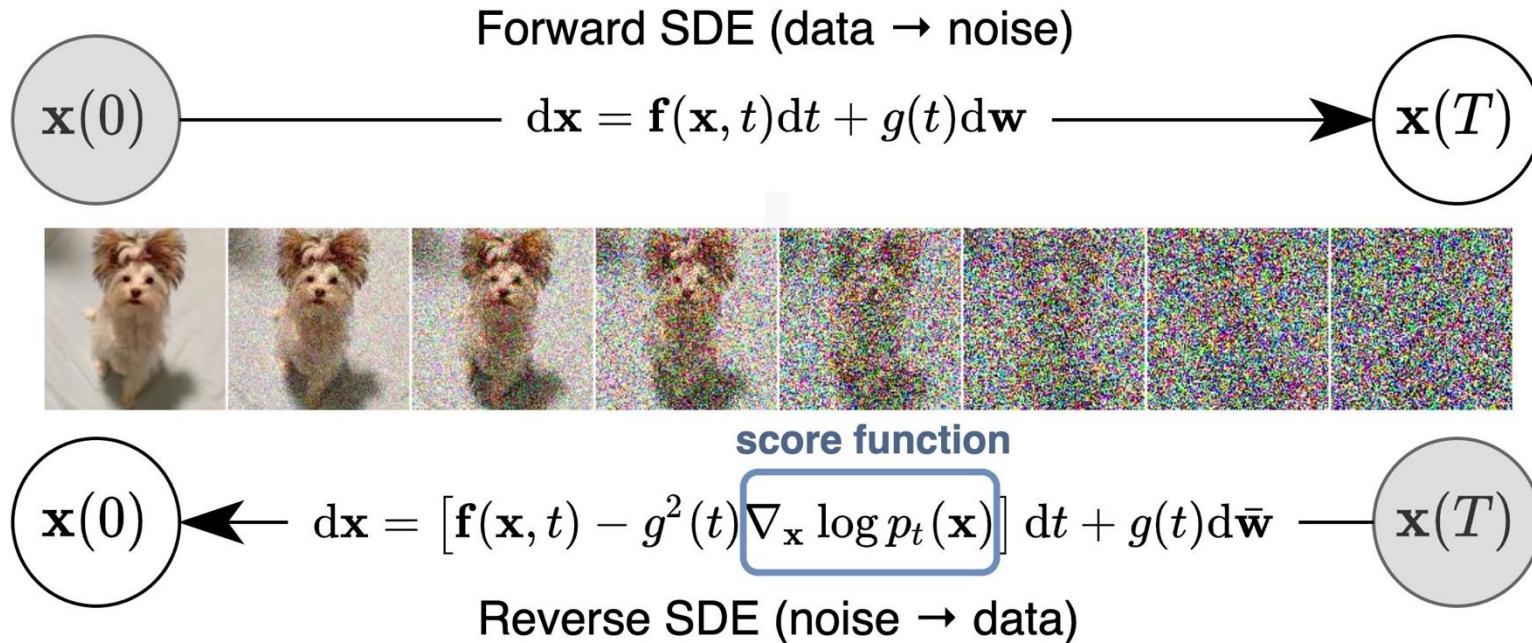
Infinite noise scales: Forward Process

It becomes a **continuous-time stochastic process**, many of which can be solved by **stochastic differential equations** (SDEs)

$$dx = f(x, t)dt + g(t)dw$$



Score SDE: Reverse Process w/ infinite noise scales



Brian D.O. Anderson. "Reverse-time diffusion equation models". *Stochastic Processes and their Applications* 1982.

Score SDE: Training

Literally just score matching with continuous time

$$\mathcal{L}_{\text{SM}}(\phi; \omega(\cdot)) := \frac{1}{2} \mathbb{E}_{t \sim p_{\text{time}}} \mathbb{E}_{\mathbf{x}_t \sim p_t} \left[\omega(t) \|\mathbf{s}_\phi(\mathbf{x}_t, t) - \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)\|_2^2 \right]$$

$$\mathcal{L}_{\text{DSM}}(\phi; \omega(\cdot)) := \frac{1}{2} \mathbb{E}_t \mathbb{E}_{\mathbf{x}_0} \mathbb{E}_{p_t(\mathbf{x}_t | \mathbf{x}_0)} \left[\omega(t) \|\mathbf{s}_\phi(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{x}_0)\|_2^2 \right], \quad (4.2.1)$$

Score SDE: Sampling

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g^2(t)\mathbf{s}_\theta(\mathbf{x}, t)]dt + g(t)d\mathbf{w}$$

We can use **solvers** to solve this differential equation

e.g. Use Euler solver, we can have the sampling process as

1. Sample x_1 from source distribution

2. $\Delta\mathbf{x} \leftarrow [\mathbf{f}(\mathbf{x}, t) - g^2(t)\mathbf{s}_\theta(\mathbf{x}, t)]\Delta t + g(t)\sqrt{|\Delta t|}\mathbf{z}_t$

$$\mathbf{x} \leftarrow \mathbf{x} + \Delta\mathbf{x}$$

$$t \leftarrow t + \Delta t,$$

where $\mathbf{z}_t \sim N(0, I)$

3. Iterate until $t = 0$

DDPM v.s. NCSN => VP SDE v.s. VE SDE

Discrete time:

NCSN: $x_{t+\Delta t} = x_t + f(x_t, t)\Delta t + g(t)\sqrt{\Delta t}\epsilon$

$$f(x_t, t) = 0 \quad g(t) = \sqrt{\frac{d\sigma^2(t)}{dt}}$$

DDPM: $x_{t+\Delta t} = x_t + f(x_t, t)\Delta t + g(t)\sqrt{\Delta t}\epsilon$

$$f(x_t, t) = -\frac{1}{2}\beta(t)x_t \quad g(t) = \sqrt{\beta_t}$$

VP = Variance Preserving

Continuous time:

VE SDE: $dx = f(x, t)dt + g(t)dw$

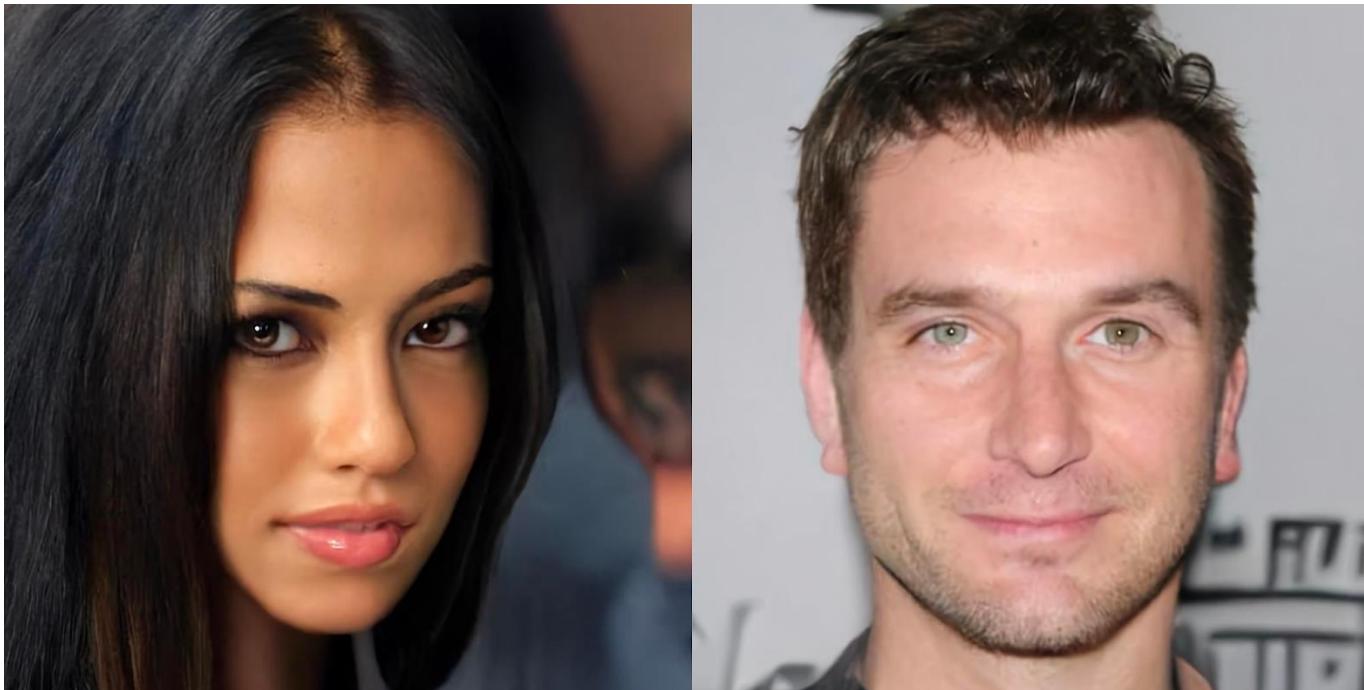
$$f(x_t, t) = 0 \quad g(t) = \sqrt{\frac{d\sigma^2(t)}{dt}}$$

VP SDE: $dx = f(x, t)dt + g(t)dw$

$$f(x_t, t) = -\frac{1}{2}\beta(t)x_t \quad g(t) = \sqrt{\beta_t}$$

VE = Variance Exploding

Score SDE



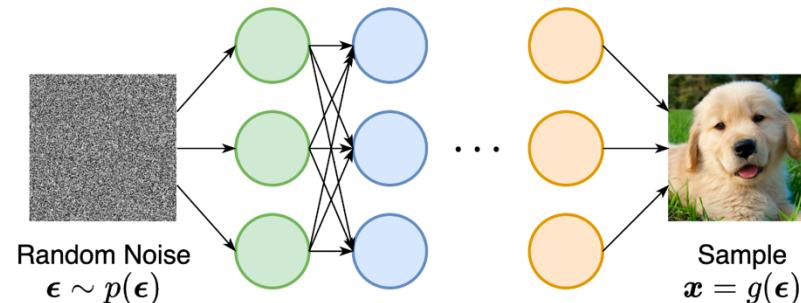
Carnegie
Mellon
University

So far we have seen a bunch of generative models...

In general, we can roughly categorize generative models into the following categories

- **Likelihood Based:** Autoregressive models, variational autoencoders (VAE), normalizing flow, energy-based models (EBM), **diffusion models**
- **Likelihood Free:** Generative adversarial networks (GAN), **score-based models**

Same
thing!



Directly sampling from $P(X)$ is usually hard because they are usually complicated! But **sampling from a simpler distribution** (eg. a Gaussian) is easy!

Generative modeling

Given a set of data $\{x\}$ and some prior knowledge & assumptions

- **Data:** samples (e.g. images of bedrooms)
- **Prior knowledge & assumptions:** parametric form, loss function, optimization, etc

We want to learn a probability distribution $p_\theta(x)$ such that

- **Generation:** If we sample a new datapoint from $p_\theta(x)$, it'd look like a "real" sample (e.g. looks like a real image of bedroom)
- **Density estimation:** Given an existing datapoint x , we should be able to assign a probability to it (probability should be high if x looks "real")
- **Unsupervised learning:** We learn everything by just looking at the data

Is there an even simpler way to do the same thing?

