
Lecture 4: Score-
based Models

Yutong (Kelly) He

10-799 Diffusion & Flow Matching, Jan 20th, 2026 

Many figures derived from Yang Song’s https://yang-song.net/blog/2021/score/ 
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Quiz time!

10 minutes

Closed-book

Pen & Paper
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Housekeeping Announcements

• Homework 1 is out! https://kellyyutonghe.github.io/10799S26/homework/

• Q6 (Alternative Parameterization) is now an optional extra credit question!

• Due date: 1/24 Sat, Late Due date: 1/26 Mon

• Training models takes time! Start early!

• Office Hours are announced:

• Kelly is hosting OH 

• In-person: Wednesdays 1:00 PM - 2:00 PM, Gates 8th Floor common 
area near the printer

• Virtual: Fridays 11:00 AM - 12:00 PM, Discord

• Krish is hosting OH Tuesdays 4:00 PM - 5:00 PM, Gates 8th Floor common 
area near the printer

• Extra OH this week: Friday 3 – 4 PM same location

• We shall have our Quiz 2 next class (1/22 Thurs)

https://kellyyutonghe.github.io/10799S26/homework/
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Previously on diffusion models…

TURN NOISE INTO DATA

Image from The Lord of The Rings
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Diffusion’s way to turn noise into data

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 = 4 = 𝑇

Forward process
(adding noise)

Reserve process
(denoising)

Cat stolen from Chieh-Hsin (Jesse) Lai
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Diffusion’s forward process

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 = 4 = 𝑇

𝑞 𝑥𝑡 𝑥𝑡−1 = 𝑁( 1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼)

𝑥𝑡 = 1 − 𝛽𝑡𝑥𝑡−1 + 𝛽𝑡𝜖, 𝜖~𝑁(0, 𝐼)

𝑞 𝑥𝑡 𝑥0 = 𝑁( ത𝛼𝑡𝑥0, (1 − ത𝛼𝑡)𝐼)

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝜖~𝑁(0, 𝐼)

𝛼𝑡 = 1 − 𝛽𝑡

ത𝛼𝑡 = ෑ

𝑠=1

𝑡

𝛼𝑠

Cat stolen from Chieh-Hsin (Jesse) Lai
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Diffusion’s reverse process

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 = 4 = 𝑇

Cat stolen from Chieh-Hsin (Jesse) Lai, GIF from Star Trek (1966)

𝑝 𝑥𝑡−1 𝑥𝑡 = 𝑁(𝜇𝜃(𝑥𝑡 , 𝑡), Σ𝜃(𝑥𝑡 , 𝑡))
𝑥𝑡 = 𝜇𝜃 𝑥𝑡 , 𝑡 + 𝐶𝜃 𝑥𝑡 , 𝑡 𝜖 

𝜖~𝑁 0, 𝐼 ,  𝐶𝜃 𝑥𝑡 , 𝑡 𝐶𝜃 𝑥𝑡 , 𝑡 ⊤ = Σ𝜃(𝑥𝑡 , 𝑡)

If we fix the variance

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = 𝑁(𝜇𝜃 𝑥𝑡 , 𝑡 , 𝜎𝑡
2𝐼)

In addition, we can also write the mean 

w.r.t. the noise prediction

𝜇𝜃 𝑥𝑡 , 𝑡 =
1

ത𝛼𝑡

(𝑥𝑡 −
𝛽𝑡

1 − ത𝛼𝑡

𝜖𝜃(𝑥𝑡 , 𝑡))

Training: 𝜖 − 𝜖𝜃(𝑥𝑡 , 𝑡)
2

 Sampling: 𝑥𝑡−1 =
1

ഥ𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1−ഥ𝛼𝑡
𝜖𝜃 𝑥𝑡 , 𝑡 + 𝜎𝑡𝜖

=> 

Easier to train!
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So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE), 

normalizing flow, energy-based models (EBM)

• Likelihood Free: Generative adversarial networks (GAN)

Directly sampling from P(X) is usually hard because they are usually complicated! But 

sampling from a simpler distribution (eg. a Gaussian) is easy!
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Two more generative models

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models , variational autoencoders (VAE) , 

normalizing flow , energy-based models (EBM) 

Normalizing flows: 

Image from Lilian Weng https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Energy-based models:
𝑝𝜃 𝑥 =

1

∫ exp 𝑓𝜃 𝑥 𝑑𝑥
 exp 𝑓𝜃 𝑥

=
1

𝑍(𝜃)
 exp 𝑓𝜃 𝑥

Partition function

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Likelihood is difficult to calculate

• Autoregressive models: you need to break everything up by chain rule and 

calculate components one by one

• VAEs: you are still using a surrogated loss (ELBO) after all the hard math

• Normalizing flows: need weird architectures to make sure everything is invertible

Normalizing flows: 
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Likelihood is difficult to calculate

• Autoregressive models: you need to break everything up by chain rule and 

calculate components one by one

• VAEs: you are still using a surrogated loss (ELBO) after all the hard math

• Normalizing flows: need weird architectures to make sure everything is invertible

• EBMs: partition function is generally intractable

Energy-based models:
𝑝𝜃 𝑥 =

1

∫ exp 𝑓𝜃 𝑥 𝑑𝑥
 exp 𝑓𝜃 𝑥

=
1

𝑍(𝜃)
 exp 𝑓𝜃 𝑥

Partition function
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Likelihood is difficult to calculate – Let’s go 
likelihood free?

• Likelihood Free: Generative adversarial networks (GAN)

  => very unstable & suffers from mode collapse

Figures from Stefano Ermon Stanford CS 236
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Likelihood is difficult to calculate – Let’s go 
likelihood free?

• Likelihood Free: Generative adversarial networks (GAN)

  => very unstable & suffers from mode collapse

Better way to avoid directly calculating the likelihood?
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If we just want to sample…

Do we really need 𝑝𝜃(𝑥) ≈ 𝑝𝑑𝑎𝑡𝑎(𝑥) to sample from the model?

• Idea: Stochastic gradient descent (or I guess ascent) to maximize log likelihood 

in the data space

• So we only need ∇𝑥log 𝑝𝑑𝑎𝑡𝑎(𝑥)

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

score function

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Score-based Models

Now we just need to train a model to estimate the score function

𝑠𝜃 𝑥 ≈ ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎(𝑥)

This can be done by minimizing an L2

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[ ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

]

This is nice because

• No more intractable partition function

• No more adversarial training

• No more weird architecture

• No breaking up with chain rule => can generate everything all at once

Fisher divergence
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How to train your score model?

But how to do get this ground truth score ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎(𝑥)?

Turns out you don’t have to!

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[ ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

]

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥
2

+ 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥
2

− 2𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 [⟨∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 ⟩]

Because 𝑥 − 𝑦
2

= 𝑥 − 𝑦, 𝑥 − 𝑦 = 𝑥, 𝑥 + 𝑦, 𝑦 − 2⟨𝑥, 𝑦⟩

constant w.r.t. 𝜃
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How to train your score model?

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[ ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

]

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥
2

− 2𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 + 𝐶

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 = ∫ 𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 𝑑𝑥

= ∫ 𝑝𝑑𝑎𝑡𝑎 𝑥
∇𝑥𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥
, 𝑠𝜃 𝑥 𝑑𝑥

= ∫ ∇𝑥𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 𝑑𝑥
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How to train your score model?

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 = ∫ ∇𝑥𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 𝑑𝑥

Integration by parts and assume that the boundary vanishes, then we can get

= −∫ 𝑝𝑑𝑎𝑡𝑎 𝑥 σ𝑑

𝜕𝑠𝜃 𝑥 (𝑑)

𝜕𝑥(𝑑)
𝑑𝑥 = − 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 [σ𝑑

𝜕𝑠𝜃 𝑥 (𝑑)

𝜕𝑥(𝑑)
]

= − 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 [tr(𝐽𝑠𝜃
(𝑥))]

trace of Jacobian
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Score matching loss

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[ ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

]

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥
2

− 2𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 + 𝐶

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥
2

+ 2𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 tr 𝐽𝑠𝜃
𝑥 + 𝐶

𝐿 𝜃 =
1

2
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥

2
+ 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 tr 𝐽𝑠𝜃

𝑥

No need for the ground 
truth score!

Aapo Hyvärinen. “Estimation of Non-Normalized Statistical Models by Score Matching”. JMLR 2005. https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf 

https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf
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Score matching loss

𝐿 𝜃 =
1

2
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥

2
+ 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 tr 𝐽𝑠𝜃

𝑥

≈
1

𝑁
෍

𝑖=1

𝑁
1

2
𝑠𝜃 𝑥(𝑖)

2
+ tr 𝐽𝑠𝜃

𝑥(𝑖)

Trace of a Jacobian is very 
very expensive to calculate!
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Denoising score matching

Now 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[ ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

] becomes

Pascal Vincent. “A Connection Between Score Matching and Denoising Autoencoders”. 2011. https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf 

https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf
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Denoising score matching

If ෤𝑥 = 𝑥 + 𝜖 for 𝜖~𝑁(0, 𝜎2𝐼), then

𝑞𝜎 ෤𝑥 𝑥 =
1

2𝜋
𝑑
2𝜎𝑑

𝑒
−

1
2𝜎2 ෤𝑥−𝑥

2

∇ ෤𝑥 log 𝑞𝜎 ෤𝑥 𝑥 =
1

𝜎2 (𝑥 − ෤𝑥)

Now 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[ ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

] becomes

Figure from Stefano Ermon Stanford CS 236
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Sampling with your score model – Langevin Dynamics

Once we have a trained score model, we can do “gradient ascent” in the data space 

to get a sample:

1. First draw from an easier-to-sample prior distribution 𝑥0~𝜋(𝑥),.e.g. 𝑁(0, 𝐼)

2. Then with small step size 𝜂, large number of steps 𝑇 and 𝑧𝑡~𝑁(0, 𝐼), iterate

𝑥𝑡+1 = 𝑥𝑡 + 𝜂∇𝑥𝑡
log 𝑝(𝑥𝑡) + 2𝜂𝑧𝑡

Can swap with the 

learned model 𝑠𝜃(𝑥𝑡)
Exploration
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Langevin Dynamics

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Score-based model pipeline

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/


26
26
26

26

But does this actually work?

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Pitfall 1: The manifold hypothesis

The score is only properly defined in the whole data space, if data resides in a lower 

dimensional manifold (i.e. some area of the data space will have no support), then the 

score can blow up (±∞ gradient) and the score estimation is not consistent any more

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. NeurIPS 2019. https://arxiv.org/pdf/1907.05600.pdf 

https://arxiv.org/pdf/1907.05600.pdf
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Pitfall 2: Score in low density region is inaccurate 

Even when we do have full support data space, the score estimation is inaccurate in 

the low density regions

And our initial sample is very likely to be in those low density regions!!!

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Pitfall 3: Gradient cannot distinguish high density 
from higher density

Even in high density region, we can still get inaccurate sample distributions

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Is it possible to solve these problem all at once?

• Because the data often lies in a lower dimensional 

manifold, the score can blow up and the score 

estimation can be inconsistent in the ambient space

• The score estimation in low density region is often 

inaccurate

• Even in high density region, we can still get 

inaccurate sample distribution because sometimes 

gradient cannot distinguish between high density 

v.s. higher density
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Is it possible to solve these problem all at once?

• Because the data often lies in a lower dimensional 

manifold, the score can blow up and the score 

estimation can be inconsistent in the ambient space

• The score estimation in low density region is often 

inaccurate

• Even in high density region, we can still get 

inaccurate sample distribution because sometimes 

gradient cannot distinguish between high density 

v.s. higher density
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To solve all these problems

How about just add noise to the data?

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Ok but, how much noise should we add

Too small Too large

Figure from Stefano Ermon Stanford CS 236
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How about we start big and gradually lower the 
noise level?

Figure from Stefano Ermon Stanford CS 236
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Annealed Langevin Dynamics

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Annealed Langevin Dynamics

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. NeurIPS 2019. https://arxiv.org/pdf/1907.05600.pdf 

https://arxiv.org/pdf/1907.05600.pdf
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Noise Conditional Score Network (NCSN) 

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. NeurIPS 2019. https://arxiv.org/pdf/1907.05600.pdf 

https://arxiv.org/pdf/1907.05600.pdf
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Noise Conditional Score Network (NCSN) 

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. NeurIPS 2019. https://arxiv.org/pdf/1907.05600.pdf 

Network Parameterization: 𝑠𝜃 ෤𝑥𝜎𝑡
, 𝜎𝑡

Training: Multi-level denoising score matching

𝐸𝜎𝑡
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝐸 ෤𝑥𝜎𝑡

~𝑝𝜎𝑡
( ෤𝑥𝜎𝑡

|𝑥)[ 𝑠𝜃 ෤𝑥𝜎𝑡
, 𝜎𝑡 +

𝑥 − ෤𝑥𝜎𝑡

𝜎𝑡
2  

2

]

Sampling: Annealed Langevin Dynamics

https://arxiv.org/pdf/1907.05600.pdf
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Hold up, wait a minute, doesn’t this look 
familiar?

Diffusion

(DDPM)

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 =

Score-based 
model

(NCSN)
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Spot the difference: DDPM v.s. NCSN

Lai et al. “The Principles of Diffusion Models”. 2025. https://arxiv.org/pdf/2510.21890#page=89.12 

https://arxiv.org/pdf/2510.21890#page=89.12
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Spot the difference: DDPM v.s. NCSN

Lai et al. “The Principles of Diffusion Models”. 2025. https://arxiv.org/pdf/2510.21890#page=89.12 

https://arxiv.org/pdf/2510.21890#page=89.12
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Noise parameterization: DDPM v.s. NCSN

First define 𝑥𝑡 = 𝜆𝑡𝑥0 + 𝜎𝑡𝜖 for 𝜖~𝑁(0, 𝐼)

NCSN: 𝜆𝑡 = 1, 𝜎𝑡 = 𝜎𝑡

   𝜖 =
𝑥𝑡−𝑥0

𝜎𝑡
=

𝑥𝑡−𝜆𝑡𝑥0

𝜎𝑡

DDPM: 𝜆𝑡 = 𝛼𝑡, 𝜎𝑡 = 1 − 𝛼𝑡

   𝜖 =
𝑥𝑡−𝛼𝑡𝑥0

1−𝛼𝑡
=

𝑥𝑡−𝜆𝑡𝑥0

𝜎𝑡
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Loss function: DDPM v.s. NCSN

First define 𝑥𝑡 = 𝜆𝑡𝑥0 + 𝜎𝑡𝜖 for 𝜖~𝑁(0, 𝐼)

NCSN: 𝜆𝑡 = 1, 𝜎𝑡 = 𝜎𝑡

   𝜖 =
𝑥𝑡−𝑥0

𝜎𝑡
=

𝑥𝑡−𝜆𝑡𝑥0

𝜎𝑡

DDPM: 𝜆𝑡 = 𝛼𝑡, 𝜎𝑡 = 1 − 𝛼𝑡

   𝜖 =
𝑥𝑡−𝛼𝑡𝑥0

1−𝛼𝑡
=

𝑥𝑡−𝜆𝑡𝑥0

𝜎𝑡

Loss functions:

NCSN: 𝐸𝜎𝑡
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝐸𝜖~𝑁(0,𝐼)[ 𝑠𝜃 𝑥𝑡 , 𝜎𝑡 +

𝜖

𝜎𝑡
2  

2

]

   𝑠𝜃
∗ 𝑥𝑡 , 𝜎𝑡  = −

1

𝜎𝑡
𝐸𝜖~𝑝𝜎𝑡

(𝜖|𝑥𝑡)[𝜖]

DDPM: 𝐸𝑡𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝐸𝜖~𝑁(0,𝐼)[ 𝜖𝜃 𝑥𝑡 , 𝑡 − 𝜖 
2

]

  𝜖𝜃
∗ 𝑥𝑡 , 𝜎𝑡  = 𝐸𝜖~𝑝𝑡(𝜖|𝑥𝑡)[𝜖]
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Basically two sides of the same coin

Diffusion

(DDPM)

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 =

Score-based 
model

(NCSN)
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What’s gonna happen if we have an infinite number 
of noise levels?
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When the number of noise scales goes to infinity

It becomes a continuous-time stochastic process, many of which can be solved by 

stochastic differential equations (SDEs)

Figure from Yang Song https://yang-song.net/blog/2021/score/ 

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
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Infinite noise scales: Forward Process

The forward processes are

NCSN: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝜎𝑡+Δ𝑡
2 − 𝜎𝑡

2𝜖 

  ≈ 𝑥𝑡 +
𝑑𝜎2 𝑡

𝑑𝑡
Δ𝑡𝜖 

DDPM: 𝑥𝑡+1 = 1 − 𝛽𝑡𝑥𝑡 + 𝛽𝑡+1𝜖

  ≈ 𝑥𝑡 −
1

2
𝛽 𝑡 𝑥𝑡Δ𝑡 + 𝛽𝑡Δ𝑡𝜖

We can also write them as

NCSN: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓 𝑥𝑡 , 𝑡 Δt + 𝑔(𝑡) Δ𝑡𝜖

   𝑓 𝑥𝑡 , 𝑡 = 0          𝑔 𝑡 =
𝑑𝜎2 𝑡

𝑑𝑡

DDPM: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓 𝑥𝑡 , 𝑡 Δt + 𝑔(𝑡) Δ𝑡𝜖

          𝑓 𝑥𝑡 , 𝑡 = −
1

2
𝛽 𝑡 𝑥𝑡      𝑔 𝑡 = 𝛽𝑡 
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Infinite noise scales: Forward Process

It becomes a continuous-time stochastic process, many of which can be solved by 

stochastic differential equations (SDEs)

𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG12RRHS 

https://openreview.net/pdf?id=PxTIG12RRHS
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Score SDE: Reverse Process w/ infinite noise scales

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG12RRHS 

Brian D.O. Anderson. “Reverse-time diffusion equation models”. Stochastic Processes and their Applications 1982.

https://openreview.net/pdf?id=PxTIG12RRHS
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Score SDE: Training

Literally just score matching with continuous time

Lai et al. “The Principles of Diffusion Models”. 2025. https://arxiv.org/pdf/2510.21890#page=89.12 

https://arxiv.org/pdf/2510.21890#page=89.12
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Score SDE: Sampling

We can use solvers to solve this differential equation

e.g. Use Euler solver, we can have the sampling process as

1. Sample 𝑥1 from source distribution

2.  

where 𝑧𝑡~𝑁(0, 𝐼)

3. Iterate until 𝑡 = 0



52
52
52

52

DDPM v.s. NCSN => VP SDE v.s. VE SDE

Discrete time:

NCSN: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓 𝑥𝑡 , 𝑡 Δt + 𝑔(𝑡) Δ𝑡𝜖

   𝑓 𝑥𝑡 , 𝑡 = 0          𝑔 𝑡 =
𝑑𝜎2 𝑡

𝑑𝑡

DDPM: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓 𝑥𝑡 , 𝑡 Δt + 𝑔(𝑡) Δ𝑡𝜖

          𝑓 𝑥𝑡 , 𝑡 = −
1

2
𝛽 𝑡 𝑥𝑡      𝑔 𝑡 = 𝛽𝑡 

 

Continuous time:

VE SDE: 𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

   𝑓 𝑥𝑡 , 𝑡 = 0          𝑔 𝑡 =
𝑑𝜎2 𝑡

𝑑𝑡

VP SDE: 𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

          𝑓 𝑥𝑡 , 𝑡 = −
1

2
𝛽 𝑡 𝑥𝑡      𝑔 𝑡 = 𝛽𝑡 

 

VP = Variance Preserving           VE = Variance Exploding
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Score SDE

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG12RRHS 

https://openreview.net/pdf?id=PxTIG12RRHS


54
54
54

54

So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE), 

normalizing flow, energy-based models (EBM), diffusion models

• Likelihood Free: Generative adversarial networks (GAN), score-based models

Directly sampling from P(X) is usually hard because they are usually complicated! But 

sampling from a simpler distribution (eg. a Gaussian) is easy!

Same 

thing!
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Generative modeling

Given a set of data {x} and some prior knowledge & assumptions

• Data: samples (e.g. images of bedrooms)

• Prior knowledge & assumptions: parametric form, loss function, optimization, etc

We want to learn a probability distribution 𝑝𝜃(𝑥) such that

• Generation: If we sample a new datapoint from 𝑝𝜃 𝑥 , it’d look like a “real” sample 

(e.g. looks like a real image of bedroom) 

• Density estimation: Given an existing datapoint x, we should be able to assign a 

probability to it (probability should be high if x looks “real”) 

• Unsupervised learning: We learn everything by just looking at the data
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Is there an even simpler way to do the same thing?

Image from Harry Potter
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