
Lecture 4: Score-
based Models

Yutong (Kelly) He

10-799 Diffusion & Flow Matching, Jan 20th, 2026

Many figures derived from Yang Song’s https://yang-song.net/blog/2021/score/

2
2
2

2

Quiz time!

10 minutes

Closed-book

Pen & Paper

3
3
3

3

Housekeeping Announcements

• Homework 1 is out! https://kellyyutonghe.github.io/10799S26/homework/

• Q6 (Alternative Parameterization) is now an optional extra credit question!

• Due date: 1/24 Sat, Late Due date: 1/26 Mon

• Training models takes time! Start early!

• Office Hours are announced:

• Kelly is hosting OH

• In-person: Wednesdays 1:00 PM - 2:00 PM, Gates 8th Floor common
area near the printer

• Virtual: Fridays 11:00 AM - 12:00 PM, Discord

• Krish is hosting OH Tuesdays 4:00 PM - 5:00 PM, Gates 8th Floor common
area near the printer

• Extra OH this week: Friday 3 – 4 PM same location

• We shall have our Quiz 2 next class (1/22 Thurs)

https://kellyyutonghe.github.io/10799S26/homework/

4
4
4

4

Previously on diffusion models…

TURN NOISE INTO DATA

Image from The Lord of The Rings

5
5
5

5

Diffusion’s way to turn noise into data

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 = 4 = 𝑇

Forward process
(adding noise)

Reserve process
(denoising)

Cat stolen from Chieh-Hsin (Jesse) Lai

6
6
6

6

Diffusion’s forward process

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 = 4 = 𝑇

𝑞 𝑥𝑡 𝑥𝑡−1 = 𝑁(1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼)

𝑥𝑡 = 1 − 𝛽𝑡𝑥𝑡−1 + 𝛽𝑡𝜖, 𝜖~𝑁(0, 𝐼)

𝑞 𝑥𝑡 𝑥0 = 𝑁(ത𝛼𝑡𝑥0, (1 − ത𝛼𝑡)𝐼)

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝜖~𝑁(0, 𝐼)

𝛼𝑡 = 1 − 𝛽𝑡

ത𝛼𝑡 = ෑ

𝑠=1

𝑡

𝛼𝑠

Cat stolen from Chieh-Hsin (Jesse) Lai

7
7
7

7

Diffusion’s reverse process

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 = 4 = 𝑇

Cat stolen from Chieh-Hsin (Jesse) Lai, GIF from Star Trek (1966)

𝑝 𝑥𝑡−1 𝑥𝑡 = 𝑁(𝜇𝜃(𝑥𝑡 , 𝑡), Σ𝜃(𝑥𝑡 , 𝑡))
𝑥𝑡 = 𝜇𝜃 𝑥𝑡 , 𝑡 + 𝐶𝜃 𝑥𝑡 , 𝑡 𝜖

𝜖~𝑁 0, 𝐼 , 𝐶𝜃 𝑥𝑡 , 𝑡 𝐶𝜃 𝑥𝑡 , 𝑡 ⊤ = Σ𝜃(𝑥𝑡 , 𝑡)

If we fix the variance

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = 𝑁(𝜇𝜃 𝑥𝑡 , 𝑡 , 𝜎𝑡
2𝐼)

In addition, we can also write the mean

w.r.t. the noise prediction

𝜇𝜃 𝑥𝑡 , 𝑡 =
1

ത𝛼𝑡

(𝑥𝑡 −
𝛽𝑡

1 − ത𝛼𝑡

𝜖𝜃(𝑥𝑡 , 𝑡))

Training: 𝜖 − 𝜖𝜃(𝑥𝑡 , 𝑡)
2

 Sampling: 𝑥𝑡−1 =
1

ഥ𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1−ഥ𝛼𝑡
𝜖𝜃 𝑥𝑡 , 𝑡 + 𝜎𝑡𝜖

=>

Easier to train!

8
8
8

8

So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM)

• Likelihood Free: Generative adversarial networks (GAN)

Directly sampling from P(X) is usually hard because they are usually complicated! But

sampling from a simpler distribution (eg. a Gaussian) is easy!

9
9
9

9

Two more generative models

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models , variational autoencoders (VAE) ,

normalizing flow , energy-based models (EBM)

Normalizing flows:

Image from Lilian Weng https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Energy-based models:
𝑝𝜃 𝑥 =

1

∫ exp 𝑓𝜃 𝑥 𝑑𝑥
 exp 𝑓𝜃 𝑥

=
1

𝑍(𝜃)
 exp 𝑓𝜃 𝑥

Partition function

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

10
10
10

10

Likelihood is difficult to calculate

• Autoregressive models: you need to break everything up by chain rule and

calculate components one by one

• VAEs: you are still using a surrogated loss (ELBO) after all the hard math

• Normalizing flows: need weird architectures to make sure everything is invertible

Normalizing flows:

11
11
11

11

Likelihood is difficult to calculate

• Autoregressive models: you need to break everything up by chain rule and

calculate components one by one

• VAEs: you are still using a surrogated loss (ELBO) after all the hard math

• Normalizing flows: need weird architectures to make sure everything is invertible

• EBMs: partition function is generally intractable

Energy-based models:
𝑝𝜃 𝑥 =

1

∫ exp 𝑓𝜃 𝑥 𝑑𝑥
 exp 𝑓𝜃 𝑥

=
1

𝑍(𝜃)
 exp 𝑓𝜃 𝑥

Partition function

12
12
12

12

Likelihood is difficult to calculate – Let’s go
likelihood free?

• Likelihood Free: Generative adversarial networks (GAN)

 => very unstable & suffers from mode collapse

Figures from Stefano Ermon Stanford CS 236

13
13
13

13

Likelihood is difficult to calculate – Let’s go
likelihood free?

• Likelihood Free: Generative adversarial networks (GAN)

 => very unstable & suffers from mode collapse

Better way to avoid directly calculating the likelihood?

14
14
14

14

If we just want to sample…

Do we really need 𝑝𝜃(𝑥) ≈ 𝑝𝑑𝑎𝑡𝑎(𝑥) to sample from the model?

• Idea: Stochastic gradient descent (or I guess ascent) to maximize log likelihood

in the data space

• So we only need ∇𝑥log 𝑝𝑑𝑎𝑡𝑎(𝑥)

Figure from Yang Song https://yang-song.net/blog/2021/score/

score function

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

15
15
15

15

Score-based Models

Now we just need to train a model to estimate the score function

𝑠𝜃 𝑥 ≈ ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎(𝑥)

This can be done by minimizing an L2

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

]

This is nice because

• No more intractable partition function

• No more adversarial training

• No more weird architecture

• No breaking up with chain rule => can generate everything all at once

Fisher divergence

16
16
16

16

How to train your score model?

But how to do get this ground truth score ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎(𝑥)?

Turns out you don’t have to!

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

]

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥
2

+ 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥
2

− 2𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 [⟨∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 ⟩]

Because 𝑥 − 𝑦
2

= 𝑥 − 𝑦, 𝑥 − 𝑦 = 𝑥, 𝑥 + 𝑦, 𝑦 − 2⟨𝑥, 𝑦⟩

constant w.r.t. 𝜃

17
17
17

17

How to train your score model?

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

]

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥
2

− 2𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 + 𝐶

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 = ∫ 𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 𝑑𝑥

= ∫ 𝑝𝑑𝑎𝑡𝑎 𝑥
∇𝑥𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥
, 𝑠𝜃 𝑥 𝑑𝑥

= ∫ ∇𝑥𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 𝑑𝑥

18
18
18

18

How to train your score model?

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 = ∫ ∇𝑥𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 𝑑𝑥

Integration by parts and assume that the boundary vanishes, then we can get

= −∫ 𝑝𝑑𝑎𝑡𝑎 𝑥 σ𝑑

𝜕𝑠𝜃 𝑥 (𝑑)

𝜕𝑥(𝑑)
𝑑𝑥 = − 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 [σ𝑑

𝜕𝑠𝜃 𝑥 (𝑑)

𝜕𝑥(𝑑)
]

= − 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 [tr(𝐽𝑠𝜃
(𝑥))]

trace of Jacobian

19
19
19

19

Score matching loss

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

]

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥
2

− 2𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 ∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑠𝜃 𝑥 + 𝐶

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥
2

+ 2𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 tr 𝐽𝑠𝜃
𝑥 + 𝐶

𝐿 𝜃 =
1

2
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥

2
+ 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 tr 𝐽𝑠𝜃

𝑥

No need for the ground
truth score!

Aapo Hyvärinen. “Estimation of Non-Normalized Statistical Models by Score Matching”. JMLR 2005. https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf

https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf

20
20
20

20

Score matching loss

𝐿 𝜃 =
1

2
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑠𝜃 𝑥

2
+ 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 tr 𝐽𝑠𝜃

𝑥

≈
1

𝑁
෍

𝑖=1

𝑁
1

2
𝑠𝜃 𝑥(𝑖)

2
+ tr 𝐽𝑠𝜃

𝑥(𝑖)

Trace of a Jacobian is very
very expensive to calculate!

21
21
21

21

Denoising score matching

Now 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

] becomes

Pascal Vincent. “A Connection Between Score Matching and Denoising Autoencoders”. 2011. https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf

https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf

22
22
22

22

Denoising score matching

If ෤𝑥 = 𝑥 + 𝜖 for 𝜖~𝑁(0, 𝜎2𝐼), then

𝑞𝜎 ෤𝑥 𝑥 =
1

2𝜋
𝑑
2𝜎𝑑

𝑒
−

1
2𝜎2 ෤𝑥−𝑥

2

∇ ෤𝑥 log 𝑞𝜎 ෤𝑥 𝑥 =
1

𝜎2 (𝑥 − ෤𝑥)

Now 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[∇𝑥 log 𝑝𝑑𝑎𝑡𝑎 𝑥 − 𝑠𝜃(𝑥)
2

] becomes

Figure from Stefano Ermon Stanford CS 236

23
23
23

23

Sampling with your score model – Langevin Dynamics

Once we have a trained score model, we can do “gradient ascent” in the data space

to get a sample:

1. First draw from an easier-to-sample prior distribution 𝑥0~𝜋(𝑥),.e.g. 𝑁(0, 𝐼)

2. Then with small step size 𝜂, large number of steps 𝑇 and 𝑧𝑡~𝑁(0, 𝐼), iterate

𝑥𝑡+1 = 𝑥𝑡 + 𝜂∇𝑥𝑡
log 𝑝(𝑥𝑡) + 2𝜂𝑧𝑡

Can swap with the

learned model 𝑠𝜃(𝑥𝑡)
Exploration

24
24
24

24

Langevin Dynamics

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

25
25
25

25

Score-based model pipeline

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

26
26
26

26

But does this actually work?

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

27
27
27

27

Pitfall 1: The manifold hypothesis

The score is only properly defined in the whole data space, if data resides in a lower

dimensional manifold (i.e. some area of the data space will have no support), then the

score can blow up (±∞ gradient) and the score estimation is not consistent any more

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. NeurIPS 2019. https://arxiv.org/pdf/1907.05600.pdf

https://arxiv.org/pdf/1907.05600.pdf

28
28
28

28

Pitfall 2: Score in low density region is inaccurate

Even when we do have full support data space, the score estimation is inaccurate in

the low density regions

And our initial sample is very likely to be in those low density regions!!!

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

29
29
29

29

Pitfall 3: Gradient cannot distinguish high density
from higher density

Even in high density region, we can still get inaccurate sample distributions

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

30
30
30

30

Is it possible to solve these problem all at once?

• Because the data often lies in a lower dimensional

manifold, the score can blow up and the score

estimation can be inconsistent in the ambient space

• The score estimation in low density region is often

inaccurate

• Even in high density region, we can still get

inaccurate sample distribution because sometimes

gradient cannot distinguish between high density

v.s. higher density

31
31
31

31

Is it possible to solve these problem all at once?

• Because the data often lies in a lower dimensional

manifold, the score can blow up and the score

estimation can be inconsistent in the ambient space

• The score estimation in low density region is often

inaccurate

• Even in high density region, we can still get

inaccurate sample distribution because sometimes

gradient cannot distinguish between high density

v.s. higher density

32
32
32

32

To solve all these problems

How about just add noise to the data?

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

33
33
33

33

Ok but, how much noise should we add

Too small Too large

Figure from Stefano Ermon Stanford CS 236

34
34
34

34

How about we start big and gradually lower the
noise level?

Figure from Stefano Ermon Stanford CS 236

35
35
35

35

Annealed Langevin Dynamics

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

36
36
36

36

Annealed Langevin Dynamics

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. NeurIPS 2019. https://arxiv.org/pdf/1907.05600.pdf

https://arxiv.org/pdf/1907.05600.pdf

37
37
37

37

Noise Conditional Score Network (NCSN)

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. NeurIPS 2019. https://arxiv.org/pdf/1907.05600.pdf

https://arxiv.org/pdf/1907.05600.pdf

38
38
38

38

Noise Conditional Score Network (NCSN)

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. NeurIPS 2019. https://arxiv.org/pdf/1907.05600.pdf

Network Parameterization: 𝑠𝜃 ෤𝑥𝜎𝑡
, 𝜎𝑡

Training: Multi-level denoising score matching

𝐸𝜎𝑡
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝐸 ෤𝑥𝜎𝑡

~𝑝𝜎𝑡
(෤𝑥𝜎𝑡

|𝑥)[𝑠𝜃 ෤𝑥𝜎𝑡
, 𝜎𝑡 +

𝑥 − ෤𝑥𝜎𝑡

𝜎𝑡
2

2

]

Sampling: Annealed Langevin Dynamics

https://arxiv.org/pdf/1907.05600.pdf

39
39
39

39

Hold up, wait a minute, doesn’t this look
familiar?

Diffusion

(DDPM)

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 =

Score-based
model

(NCSN)

40
40
40

40

Spot the difference: DDPM v.s. NCSN

Lai et al. “The Principles of Diffusion Models”. 2025. https://arxiv.org/pdf/2510.21890#page=89.12

https://arxiv.org/pdf/2510.21890#page=89.12

41
41
41

41

Spot the difference: DDPM v.s. NCSN

Lai et al. “The Principles of Diffusion Models”. 2025. https://arxiv.org/pdf/2510.21890#page=89.12

https://arxiv.org/pdf/2510.21890#page=89.12

42
42
42

42

Noise parameterization: DDPM v.s. NCSN

First define 𝑥𝑡 = 𝜆𝑡𝑥0 + 𝜎𝑡𝜖 for 𝜖~𝑁(0, 𝐼)

NCSN: 𝜆𝑡 = 1, 𝜎𝑡 = 𝜎𝑡

 𝜖 =
𝑥𝑡−𝑥0

𝜎𝑡
=

𝑥𝑡−𝜆𝑡𝑥0

𝜎𝑡

DDPM: 𝜆𝑡 = 𝛼𝑡, 𝜎𝑡 = 1 − 𝛼𝑡

 𝜖 =
𝑥𝑡−𝛼𝑡𝑥0

1−𝛼𝑡
=

𝑥𝑡−𝜆𝑡𝑥0

𝜎𝑡

43
43
43

43

Loss function: DDPM v.s. NCSN

First define 𝑥𝑡 = 𝜆𝑡𝑥0 + 𝜎𝑡𝜖 for 𝜖~𝑁(0, 𝐼)

NCSN: 𝜆𝑡 = 1, 𝜎𝑡 = 𝜎𝑡

 𝜖 =
𝑥𝑡−𝑥0

𝜎𝑡
=

𝑥𝑡−𝜆𝑡𝑥0

𝜎𝑡

DDPM: 𝜆𝑡 = 𝛼𝑡, 𝜎𝑡 = 1 − 𝛼𝑡

 𝜖 =
𝑥𝑡−𝛼𝑡𝑥0

1−𝛼𝑡
=

𝑥𝑡−𝜆𝑡𝑥0

𝜎𝑡

Loss functions:

NCSN: 𝐸𝜎𝑡
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝐸𝜖~𝑁(0,𝐼)[𝑠𝜃 𝑥𝑡 , 𝜎𝑡 +

𝜖

𝜎𝑡
2

2

]

 𝑠𝜃
∗ 𝑥𝑡 , 𝜎𝑡 = −

1

𝜎𝑡
𝐸𝜖~𝑝𝜎𝑡

(𝜖|𝑥𝑡)[𝜖]

DDPM: 𝐸𝑡𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝐸𝜖~𝑁(0,𝐼)[𝜖𝜃 𝑥𝑡 , 𝑡 − 𝜖
2

]

 𝜖𝜃
∗ 𝑥𝑡 , 𝜎𝑡 = 𝐸𝜖~𝑝𝑡(𝜖|𝑥𝑡)[𝜖]

44
44
44

44

Basically two sides of the same coin

Diffusion

(DDPM)

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 =

Score-based
model

(NCSN)

45
45
45

45

What’s gonna happen if we have an infinite number
of noise levels?

46
46
46

46

When the number of noise scales goes to infinity

It becomes a continuous-time stochastic process, many of which can be solved by

stochastic differential equations (SDEs)

Figure from Yang Song https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

47
47
47

47

Infinite noise scales: Forward Process

The forward processes are

NCSN: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝜎𝑡+Δ𝑡
2 − 𝜎𝑡

2𝜖

 ≈ 𝑥𝑡 +
𝑑𝜎2 𝑡

𝑑𝑡
Δ𝑡𝜖

DDPM: 𝑥𝑡+1 = 1 − 𝛽𝑡𝑥𝑡 + 𝛽𝑡+1𝜖

 ≈ 𝑥𝑡 −
1

2
𝛽 𝑡 𝑥𝑡Δ𝑡 + 𝛽𝑡Δ𝑡𝜖

We can also write them as

NCSN: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓 𝑥𝑡 , 𝑡 Δt + 𝑔(𝑡) Δ𝑡𝜖

 𝑓 𝑥𝑡 , 𝑡 = 0 𝑔 𝑡 =
𝑑𝜎2 𝑡

𝑑𝑡

DDPM: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓 𝑥𝑡 , 𝑡 Δt + 𝑔(𝑡) Δ𝑡𝜖

 𝑓 𝑥𝑡 , 𝑡 = −
1

2
𝛽 𝑡 𝑥𝑡 𝑔 𝑡 = 𝛽𝑡

48
48
48

48

Infinite noise scales: Forward Process

It becomes a continuous-time stochastic process, many of which can be solved by

stochastic differential equations (SDEs)

𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG12RRHS

https://openreview.net/pdf?id=PxTIG12RRHS

49
49
49

49

Score SDE: Reverse Process w/ infinite noise scales

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG12RRHS

Brian D.O. Anderson. “Reverse-time diffusion equation models”. Stochastic Processes and their Applications 1982.

https://openreview.net/pdf?id=PxTIG12RRHS

50
50
50

50

Score SDE: Training

Literally just score matching with continuous time

Lai et al. “The Principles of Diffusion Models”. 2025. https://arxiv.org/pdf/2510.21890#page=89.12

https://arxiv.org/pdf/2510.21890#page=89.12

51
51
51

51

Score SDE: Sampling

We can use solvers to solve this differential equation

e.g. Use Euler solver, we can have the sampling process as

1. Sample 𝑥1 from source distribution

2.

where 𝑧𝑡~𝑁(0, 𝐼)

3. Iterate until 𝑡 = 0

52
52
52

52

DDPM v.s. NCSN => VP SDE v.s. VE SDE

Discrete time:

NCSN: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓 𝑥𝑡 , 𝑡 Δt + 𝑔(𝑡) Δ𝑡𝜖

 𝑓 𝑥𝑡 , 𝑡 = 0 𝑔 𝑡 =
𝑑𝜎2 𝑡

𝑑𝑡

DDPM: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓 𝑥𝑡 , 𝑡 Δt + 𝑔(𝑡) Δ𝑡𝜖

 𝑓 𝑥𝑡 , 𝑡 = −
1

2
𝛽 𝑡 𝑥𝑡 𝑔 𝑡 = 𝛽𝑡

Continuous time:

VE SDE: 𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

 𝑓 𝑥𝑡 , 𝑡 = 0 𝑔 𝑡 =
𝑑𝜎2 𝑡

𝑑𝑡

VP SDE: 𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

 𝑓 𝑥𝑡 , 𝑡 = −
1

2
𝛽 𝑡 𝑥𝑡 𝑔 𝑡 = 𝛽𝑡

VP = Variance Preserving VE = Variance Exploding

53
53
53

53

Score SDE

Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. ICLR 2021. https://openreview.net/pdf?id=PxTIG12RRHS

https://openreview.net/pdf?id=PxTIG12RRHS

54
54
54

54

So far we have seen a bunch of generative models…

In general, we can roughly categorize generative models into the following categories

• Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM), diffusion models

• Likelihood Free: Generative adversarial networks (GAN), score-based models

Directly sampling from P(X) is usually hard because they are usually complicated! But

sampling from a simpler distribution (eg. a Gaussian) is easy!

Same

thing!

55
55
55

55

Generative modeling

Given a set of data {x} and some prior knowledge & assumptions

• Data: samples (e.g. images of bedrooms)

• Prior knowledge & assumptions: parametric form, loss function, optimization, etc

We want to learn a probability distribution 𝑝𝜃(𝑥) such that

• Generation: If we sample a new datapoint from 𝑝𝜃 𝑥 , it’d look like a “real” sample

(e.g. looks like a real image of bedroom)

• Density estimation: Given an existing datapoint x, we should be able to assign a

probability to it (probability should be high if x looks “real”)

• Unsupervised learning: We learn everything by just looking at the data

56
56
56

56

Is there an even simpler way to do the same thing?

Image from Harry Potter

	Slide 1
	Slide 2: Quiz time!
	Slide 3: Housekeeping Announcements
	Slide 4: Previously on diffusion models…
	Slide 5: Diffusion’s way to turn noise into data
	Slide 6: Diffusion’s forward process
	Slide 7: Diffusion’s reverse process
	Slide 8: So far we have seen a bunch of generative models…
	Slide 9: Two more generative models
	Slide 10: Likelihood is difficult to calculate
	Slide 11: Likelihood is difficult to calculate
	Slide 12: Likelihood is difficult to calculate – Let’s go likelihood free?
	Slide 13: Likelihood is difficult to calculate – Let’s go likelihood free?
	Slide 14: If we just want to sample…
	Slide 15: Score-based Models
	Slide 16: How to train your score model?
	Slide 17: How to train your score model?
	Slide 18: How to train your score model?
	Slide 19: Score matching loss
	Slide 20: Score matching loss
	Slide 21: Denoising score matching
	Slide 22: Denoising score matching
	Slide 23: Sampling with your score model – Langevin Dynamics
	Slide 24: Langevin Dynamics
	Slide 25: Score-based model pipeline
	Slide 26: But does this actually work?
	Slide 27: Pitfall 1: The manifold hypothesis
	Slide 28: Pitfall 2: Score in low density region is inaccurate
	Slide 29: Pitfall 3: Gradient cannot distinguish high density from higher density
	Slide 30: Is it possible to solve these problem all at once?
	Slide 31: Is it possible to solve these problem all at once?
	Slide 32: To solve all these problems
	Slide 33: Ok but, how much noise should we add
	Slide 34: How about we start big and gradually lower the noise level?
	Slide 35: Annealed Langevin Dynamics
	Slide 36: Annealed Langevin Dynamics
	Slide 37: Noise Conditional Score Network (NCSN)
	Slide 38: Noise Conditional Score Network (NCSN)
	Slide 39: Hold up, wait a minute, doesn’t this look familiar?
	Slide 40: Spot the difference: DDPM v.s. NCSN
	Slide 41: Spot the difference: DDPM v.s. NCSN
	Slide 42: Noise parameterization: DDPM v.s. NCSN
	Slide 43: Loss function: DDPM v.s. NCSN
	Slide 44: Basically two sides of the same coin
	Slide 45: What’s gonna happen if we have an infinite number of noise levels?
	Slide 46: When the number of noise scales goes to infinity
	Slide 47: Infinite noise scales: Forward Process
	Slide 48: Infinite noise scales: Forward Process
	Slide 49: Score SDE: Reverse Process w/ infinite noise scales
	Slide 50: Score SDE: Training
	Slide 51: Score SDE: Sampling
	Slide 52: DDPM v.s. NCSN => VP SDE v.s. VE SDE
	Slide 53: Score SDE
	Slide 54: So far we have seen a bunch of generative models…
	Slide 55: Generative modeling
	Slide 56: Is there an even simpler way to do the same thing?

