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Housekeeping Announcements

« Homework 1 is out!
* https://kellyyutonghe.github.io/10799526/homework/
 Due date: 1/24 Sat, Late Due date: 1/26 Mon

* Training models take time! Start early!

« Modal is giving a guest lecture tomorrow (1/16) 5 PM SH 105

«  We will be admitting students from the waitlist until Friday noon
* We will send out the Modal coupons on Friday (on Discord)
* Auditing students don't need to submit any form!

.« We shall have our Quiz 1 next class (1/20 Tue) E/[%Il-lr(l)(:lgie

University


https://kellyyutonghe.github.io/10799S26/homework/
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What is probabilistic modeling?
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Generative modeling Jir 2o undoiand, |

Given a set of data {x} and some prior knowledge & assumptions

- Data: samples (e.g. images of bedrooms)

« Prior knowledge & assumptions: parametric form, loss function, optimization, etc
We want to learn a probability distribution pg(x) such that

« Generation: If we sample a new datapoint from pg(x), itd look like a “real” sample

(e.g. looks like a real image of bedroom)

- Density estimation: Given an existing datapoint x, we should be able to assign a

probability to it (probability should be high if x [ooks “real”)
Carnegie
- Unsupervised learning: We learn everything by just looking at the data [Mellon
University



Attempt 1: Autoregressive modeling

Given dataset {x®},

L(Q) = — Z Z logpg (xlgi)lxg,z
k

i

== > (ogpy (x
i k

which is cross entropy loss when ground truth labels are one-hot

This is LLM! NEegie
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Attempt 3: Catch me if you can

dicaprio hanks

> S
-

Generator

Tries to make the
fake samples
more and more
realistic so that it
can fool the

discriminator

The true story of a real fake. P

catch me if you can

Discriminator

Tries to be better
and better at
distinguishing
fake samples

from real ones
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Attempt 2: Variational autoencoder (VAE)

Decoder

Reconstruction

Carnegie
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Kingma & Welling. “Auto-Encoding Variational Bayes”. ICLR 2014. https://arxiv.org/pdf/1312.6114



https://arxiv.org/pdf/1312.6114

Attempt 2: Variational autoencoder (VAE)

Reconstruction

We need to do two things
« Maximize the likelihood of data X => maximize log pg (x)

« Make sure that the Z we get from encoding X can actually be decoded into g/[all'lnegle
the same X => minimize the “difference” between q4(z|x) and pg(z|x) etion |
University

Kingma & Welling. “Auto-Encoding Variational Bayes”. ICLR 2014. https://arxiv.org/pdf/1312.6114



https://arxiv.org/pdf/1312.6114

Attempt 2: Variational autoencoder (VAE)

‘ Decoder
@f Dg
X Reconstruction
What we can design: pg(2), q4(zlx), pg (x|2)
What we don't have: py(x), pg(z]|x) )
What we want: pg (x), q4(z|x), pg(z|x) %%Il'ﬂ)(:lgle
University

Kingma & Welling. “Auto-Encoding Variational Bayes”. ICLR 2014. https://arxiv.org/pdf/1312.6114



https://arxiv.org/pdf/1312.6114
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VAEFE's evidence lower bound (ELBO)

We are trying to
« Maximize the likelihood of data X => maximize log pg (x)

« Make sure that the Zwe get from encoding X can actually be decoded into the

same X => minimize the “difference” between g4 (z|x) and pg(z|x)

= argmaxg g logpg (x) — Di1(q¢ (2|X)[|pe (z]X)) KL regularization

= argmaxy e E, g, (z1x) [108 o (x]2)] — Dy (a4 (z]%)|Ipe (2))
Encode-Decode —_

—

reconstruction loss ‘ ' ' Carnegie

Evidence lower bound (ELBO) %9»1101’1 ity
niversi
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Two ways to derive ELBO (1)

log pe(x) = Eqy (z/x) [log pg(x)]

[ pG(X: Z)
= Ky, (2)x) |log { ”

Po(2|x)
ZX
8 | 9p(2]%) po(alx)
[ po(x, z) d¢ (Z|X)} ]
=E 1 E 1
oo 18 | i ||+ Bom 18 [
Lo s () =D 1.(a5(2lx)|[po (zlx))
(ELBO)
Carnegie
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Kingma & Welling. “An Introduction to Variational Autoencoders”. 2019. https://arxiv.org/pdf/1906.02691
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Two ways to derive ELBO (1)

po (%, 2) [ [%(ZIX)”
log po(x) = Eq, a0 |10 +Eq, (150 |10
820(x) = By (s )l ; [%(ZIX) 2k ® | po(zlx) |
o) =Dic1.(ag(z1%) [P 2lx))

(ELBO)

(x,2)
Ez~q¢(z|x) llog (Ci:(;;))] =F ~qp(z]x) [log Peo (x,z) — log Q¢(Z|x)]

= Eyq, (210|108 Do (2) + logpg (x|2) — log g4 (z|x)]
= Ez~qy(zi0) 108 Do (x12)] — Ezeqy(zx) [log g4 (zlx) — log pg(2)]
= Ezq, (210|108 Do (x]2)] — Di1.(q4(z]x)1pe(2))
Carnegie
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Two ways to derive ELBO (2)

log pg(x) = log [ pg(x,z)dz

q¢(z|x) po(x, z)
=logf L LCPole Az = 0g Byl 2o
Jensen'’s Inequality 9 de
po(x,2)
> E lo
q4(Z1X) [ gQ¢(Z|X)

= Ez~q4 (210108 Pe (x12)] — Di1(q(2]12)||pe(2))

For a convex function f, E[f(x)] >= f(E[X])

For a concave function f, f(E[x]) >= E[f(X)]

Stanford CS 236 by Prof. Stefano Ermon

This (Johan) Jensen
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How do we train a VAE

e S
What we can design: pg(2), q4(zlx), ps(x|2) Y ——
The ELBO: E;q4(zix) [108 e (x|2)] — Di1(q4 (z]1%)|1pe (2)) 4
= E; gy (z10)[108De (x|2)] — Ezgy(z1x) [log g4 (z]x) — logpg(2)]
We can choose py(2) freely,
We need a sampler that we so it better be something
can differentiate through (so simple in log form
that we can take backprop)
Carnegie
Mellon
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Reparameterization Trick
Ez~q¢(z|x)[logp6 (x|2)] - Ez~q¢,(z|x)[log CI¢(Z|X) - 1ng9(Z)]

Let's just choose the simplest py(2) -- a standard normal Gaussian N(0,1)
Then what would be the easiest way to parametrize q4(z|x)?

Also a Gaussian!
If g4 (z|x) is a diagonal Gaussian, then we can literally write it out as N(u¢(x), aq%(x)l)

Then we are literally just predicting two things: u(x) and aj,(x)

So to sample from q4(z|x) , we can literally just do

1. Sample an e~N(0,I)

2. z= pp(x) +op(x)e E/[%Il'lf(l)(:lgle

University

Image edited by nano banana, originally from https://hgss.copernicus.org/articles/11/199/2020/
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Reparameterization Trick

Ezqp(zi0)[108 D9 (x12)] = Ez—q (212|108 G (21%) — log pg(2)]
If g4 (z|x) is a diagonal Gaussian, then we can literally write it out as N(u¢(x), a(,%(x)l)

Then we are literally just predicting two things: 4 (x) and aj,(x)
So to sample from q4(z|x) , we can literally just do

1. Sample an e~N(0,I)

2. z= pp(x) +op(x)e

Then you have the closed-form solution for the KL

Ezqy(zlx) [log q¢(z|x) —logpg (z)]

Mellon
University

1 , ) :
= EZ ueG g +o(x;P)g — 1 —2loga(x; ¢)g Carnegie
d

|

Image edited by nano banana, originally from https://hgss.copernicus.org/articles/11/199/2020/



What about p,(x|2)?

Ez~q¢,(z|x) [108196 (xlz)] - Ez~q¢,(z|x) [log CI¢(Z|X) — log pB(Z)]
We need to be able to calculate log py (x|z) easily as well
Also a Gaussian!

Let's assume pg (x|z)~N(ug(2),02I) , then the reconstruction term also has closed

form solution
Ez~q¢(z|x) [log Po (x IZ)]

1 1 2
=5 Errqp@n) [_ﬁ“x — e (| ] +C

x _Ez~q¢(zlx) [“x - #9(2)”2]
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How do we train a VAE

For existing data x,

1. Encode x and get ug (x) and o (x)
2. Sampleane~N(0,I)

3. z= pgp(x) +op(x)e

4. Calculate the loss

L(g, 05%) = |1x — g DI| + 5 Za (s $)3 + 0 (x5 )3 — 1 = 2log o(x; $)g

Carnegie
Mellon
University
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How to do sample from a VAE

At sampling time, all you need to do is
1. Sample anz~N(0,I)
2. Getx = Decoder(z)

That's it!

Carnegie
Mellon
University
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So far we have seen a bunch of generative models...

In general, we can roughly categorize generative models into the following categories

+ Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM)

 Likelihood Free: Generative adversarial networks (GAN)

al

Random Noise | Sample
€ ~ p(e) — = g(e)

Directly sampling from P(X) is usually hard because they are usuaIIy complicated! But Carnegle

sampling from a simpler distribution (eg. a Gaussian) is easy! Mellon
University
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Are they all perfect?

In general, we can roughly categorize generative models into the following categories

+ Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM) //
 Likelihood Free: Generative adversarial networks (GAN) .

Random Noise .A.

€ ~ p( ) ""'x.,_,___,,f
Directly sampling from P(X) is usually hard because they are usuaIIy complicated! But Carnegle

sampling from a simpler distribution (eg. a Gaussian) is easy! Mellon
University



What's wrong with previous models

« Autoregressive models: you need to calculate stuff one by one

* For text this may be ok (but your chatgpt is just gonna think for a very very

long time ©)

* For image this is tragedy because this means you need to calculate things
pixel by pixel (or maybe patch by patch, but same idea), if you have a 4k
image, that means you need to do 3840 x 2160=8294400 forward passes

of your model!

Carnegie
Mellon
University
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What's wrong with previous models

« VAEs are notorious for generating blurry images

g r/MachineLearning - 7y ago
Z  finallyifoundvalidUN

[]Why are images created by GAN sharper than images by VAE?

Discussion
There are different opinions . there is an opinion that the VAE loss function and in particular KL term is the main
reason of getting such kind of blurry images, another one says the failure of VAE in generating sharp images
implies that the model is not able to learn the true posterior distribution.

GANSs learn a loss function rather than using an existing one and they learn a loss that tries to classify if the
output image is real or fake, while simultaneously training a generative model to minimize this loss but VAE kinda
computes the euclidean distance between predicted and ground truth pixels which is not a good method of
judging similarity so it yields blurry images

* If your encoder learns to map to different x's into the same z

region (which happens), then you are sort of just generating Carnegie
“average faces” all the time %I(;:E%Irl sity
Screenshot from h _than



https://www.reddit.com/r/MachineLearning/comments/9t712f/dwhy_are_images_created_by_gan_sharper_than/

What's wrong with previous models

« GANs are very unstable & suffers from mode collapse

@ Theorem (informal): If the generator updates are made in function : :
space and discriminator is optimal at every step, then the generator is @ GANs are notorious for SUffe”ng from mode coIIapse
guaranteed to converge to the data distribution

@ Unrealistic assumptions!

@ In practice, the generator and discriminator loss keeps oscillating
during GAN training

e Intuitively, this refers to the phenomena where the generator of a
GAN collapses to one or few samples (dubbed as “modes”)

Source: Mirantha Jayathilaka

o No robust stopping criteria in practice (unlike MLE) Arjovsky et al., 2017

Carnegie
Mellon

University
Screenshot from Stanford CS 236 by Prof. Stefano Ermon



From noise to data

“One ring to
™ rule them all,

Healthier

type of

magic «

25
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From noise to data

ONE DOES NOT S#MP[Y
1 - ré

:

g—.

Carnegie

TURN NOISE INTO DATA
Mellon

Image from The Lord of The Rings




From noise to data

27

Now you have a diffusion model!

Carnegie
Mellon
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How do we model this process with math

pﬁlxtllxt
O O Og H

Q‘(Xt|Xt 1

Forward Process (adding noise):
T
g(xurlxo) = [ [a(xelxi-1),  a(xelxio1) = N(x¢;v/1 = Bixi—1, Bi)
t=1

Reverse Process (denoising):
T
po(xo.r) = p(x7) [ [ Po(xe-1l%e),  po(xe—1lxe) = N (xe-1; pg(xe, 1), Do (xe, )

11 Carnegie
B Mellon

University



How do we train this diffusion model

pﬂxtllxt
(o) o () ) H

Q’(Xt|xt 1

We want log pg (x)

log pg(xo) = logfpe(xo-T))der
—d
q(x1.71%0) T
pe(xo.T)
Q(x(l:Tle))
Po\Xo.T
>F log————
q(xl:T|x0)[ gq(xl:Tle)

>
Jensen’s Inequality /
N

Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. ICML 2015.

= log f q(x1.7|x0)

= log EQ(X1:T|XO)[ ]

Carnegie
Mellon
University
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How do we train this diffusion model

pﬂxtllxt
et Bl = H

Q(Xt|xt 1

L=E,|—log po(Xo.T) ]

q(x1.7[%0)

t>1 q(%¢|x¢-1)

=E, | - log p(x7) Zlo Po(X:- 1"“)]

—E, |~ logp(xr) - 3 log 22Zt=1X0) 0 Polxolxs)
t>1 q(x;[%—1) q(x1]xo)

=E, [—logp(xT) — Zlo Poxe—1 ) q(xt,1|x0) —logM]

L t>1 xt 1|Xtax0) Q(Xt|xo) q(x1|x0)
- Po(Xi-1[x1) Carnegie
—E |- log 1 g
! q(XT|X0 t>21 q(x¢—1x¢, %) nge(xo|x1)] Mellon

University

Ho et al. Denoising Diffusion Probabilistic Models. NeurlPS 2020. https://arxiv.org/pdf/2006.11239



https://arxiv.org/pdf/2006.11239

How do we train this diffusion model

pﬂxtllxt
@H —@— O H

(Xt |Xt 1

L=E,;|-log _Po(Xo:T)_ ]

Q(Xl-T|X0)

=E, -_ p(xT) Zl Po(x_1 %)

i (XT|X0) =1 q(x¢—1]x¢,%0)

— log ps (x0 |K1)]

=E, | Dxu(q(xr|x0) || p(x1)) + Y Dxr.(a(xe-1]%t, %0) || po(xs-1xt)) — logpa(mlxl)]

prior matching term reconstruction loss
Carnegie

Mellon
University

KL matching terms

Ho et al. Denoising Diffusion Probabilistic Models. NeurlPS 2020. https://arxiv.org/pdf/2006.11239
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Good idea, but

BEalSEEY TSR
HElamAELS ENHINCERES
BRSNS
- B I W A B el I I O Y
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Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example training data. (b)

Random samples generated by the diffusion model.

Carnegie
Mellon
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Can we do things in a simpler way?

pﬁlxtllxt
@ — @ — @H H

So we know this thing is Markov

i.e. it just adds a small amount of noise at every time step

Then why don't we just learn a noise predictor to predict the noise at each time step

and then gradually reduce the noise?

Now you have DDPM! Carnegie
Mellon
University
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Denoising Diffusion Probabilistic Models

pBth\Xt
(er) H@ @H %

Eq [PKL(Q(XﬂXO) || P(XT)J‘F ZPKL(Q(Xt—l |Xt7 XO) || PG(Xt—l |Xt)l: logpg(x0|x1l]
t>1

Lt L;_1 LO

First of all, we can fix the forward process to make learning easier
T

g(xrrlxo) = [[a(xelxecn),  alxelxio1) = N(xi54/1 = Bixi1, BiT)

t=1 ap:=1—frand @, == [\, o
q(xt|x0) = N(Xt; \/57753(07 (1 - dt)I)
| | Carnegie
Then L_T is constant because they are set to be standard Gaussians Mellon
~ University

Ho et al. Denoising Diffusion Probabilistic Models. NeurlPS 2020. https://arxiv.org/pdf/2006.11239
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Denoising Diffusion Probabilistic Models
@—> —>@pBXt i @—> —>

E, [PKL(Q(XT|XO) I p(x7)) + ZPKL(Q(xt—l [x¢,X0) || Po(xs—1]x¢)) — IOgPQ(X0|X1l:|
t>1

Lt Li_q Lo

First of all, we can fix the forward process to make learning easier
— t
ar=1-frand a; ==[][,_; o

q(x¢|x0) = N (x5 Vagxo, (1 — az)I)

q(%¢—1%z, %0) = N (%41 fi; (%4, %0), BeI),
27 1—a; A
Ve&-1b vl =) ooy g =-—"=1g  Carnegie

1 — oy 1— oy 1—ay Mellon
University

where i, (x¢,X0) =

Ho et al. Denoising Diffusion Probabilistic Models. NeurlPS 2020. https://arxiv.org/pdf/2006.11239
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Denoising Diffusion Probabilistic Models

pBth\Xt
(er) H@ @H %

Eq [PKL(Q(XﬂxO) || P(XT)J‘F ZPKL(Q(Xt—l |Xt7 XO) || PG(Xt—l |Xt)l: logpg(x0|xll]

Lt t>1 Ly Lo

Similarly, we can also fix the variance of the reverse process and only learn the mean
po(xt—1]x:) = N(x¢-1; po (x4, 1), 07 1)

1.
Lot = By | 5ol ) — g O
Carnegie
Mellon
- University

Ho et al. Denoising Diffusion Probabilistic Models. NeurlPS 2020. https://arxiv.org/pdf/2006.11239
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Denoising Diffusion Probabilistic Models

E, | Dxr.(¢(xr|x0) || p(x1)) + )  Dir.(q(Xe—1/s, %0) || po(%s-11%¢)) —log po(xo|x1)
he t>1 e

LT Lt—l LO
Similarly, we can also fix the variance of the reverse process and only learn the mean
e el — : 2
Po(Xi—1|x¢) = N (X¢—1; pg(%¢, 1), 071)

1 .
oot = 8, | o e ) — o, D +C
t

q(x¢|x0) = N (x¢; vVayxo, (1 — ay)I)

Channeling reparameterization trick:

X¢(Xo0, €) = /@Xo + /1 — aze for e ~ N'(0,T) Carnegie
Mellon
University
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Denoising Diffusion Probabilistic Models

1, .
Lty :Eq _2Hl'l‘t(xtaxo)_”9(xtat)“2 +C
207}

Xt (X0, €) = /ouXo + /1 — o€ for € ~ N(0,1)

Q}th ft (xt(xo,e), L(xt(xo, €)—v1-— dtﬁ)) — Mg (x¢(%o0, €),t)

Li1—C =Ey « .
t—1 y \/OC_-[;

2]
Channeling high end Bayes Theorem:
q(xs_1]%¢,%0) = N (x¢_1; ity (X2, %0), B 1),

NG Vol — oy ~ 1—ay_
where f1,(x¢,Xg) == 1at ;ﬂt X0 + tg . : I)Xt and [ = 1 a(; - By
— O — Oy — Oy
1 1 By :
Li 1 — C = Exo,e o2 (xt(XO: 6) - = 6) - ﬂe(xt(XOJ 6): t) ]
201 || Veu L=a Carnegie
Mellon

University
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Denoising Diffusion Probabilistic Models

Lt—l_c ZEXO,E ;Ttg \/%_t(xt(xo,e)—\/%e)—ug(xt(xo,e),t) ]
| ]
]
H’t(xtvxo)
( t>—~( L VTG <x>>)— : (x— B ox t))
Mo \X¢, U) = Uy xt’\/o_Ttxt Q€9 (Xt —\/a_t t me ts

2
Li1—-C= ]Exo,el bi ) |‘e—69(\/a_txo+\/1—cute,t)H2]

20’?0475(1 — Q¢

Leimple(6) = Bty e | [l — ea(v/@rxo + VT =Ge, 1 ] Carnegie
Now you have DDPM Training! Mellon

University
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Denoising Diffusion Probabilistic Models

1
202

1

2
= |
p@u(xt—llxt) = N(Xt—13 Mo (X, 1), UtQI)

ol ) = i (0, <= loxs = V= eatxe) ) = \/Z—t(xt‘ )

Xp_1 = \/z_t (xt — \/f_tiate@(xt,t)) + 0z, where z ~ N(O,I)
\ ' J

Ho (Xta t)

Bt

Lii=C =Bxye Vi

(Xt (%0, €) — 6) — g (%t (X0, €), 1)

Carnegie

Now you have DDPM sampling! pelion

University



DDPM Algorithms

Algorithm 1 Training Algorithm 2 Sampling
I: repeat 1: xr ~ N(0,1)
2: X0 ~ q(xo) 2: fort=T,...,1do
3’ tr~ I.i;l(l(f)o?)n({l,...,T}) 3: z~N(0,I)ift >1,elsez=0
C e~ , e
5: Take gradient descent step on 4 X1 = \/%—t Xy — hﬁg(xt,t)) + Oz
Vo ||e — eg(vVauxo + V1 — aue, t)”2 5: end for
6: until converged 6: return xo

Carnegie
Mellon
University
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Image from https://makeameme.org/meme/thats-so-easy
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The results are great!
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Flgure 1: Generated samples on CelebA-HQ 256 x 256 (left) and unconditional CIFAR10 (right)
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Diffusion models are lowkey VAEs

Decoder
Do — ..
(learned)
Carnegie
Mellon

University



Which model architecture was used for DDPM?

64 64

A
¥

input
image
tile

572 x 572
570 x 570
568 x 568

¥ 128 128
256 128
= BB
HE B SRS
NN o
¥ 256 256 - 1
o > % La
. g B
¥ 50 sz 1024 512
sl=ll-lN T . .
=
© L J 1024 43 B

302 x 392

390 x 390 A4

28 64 64 2

\J

388 x388 W

output
segmentation
map

=» conv 3x3, RelLU
copy and crop

¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Carnegie
Mellon

Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAIl 2020. https://arxiv.org/abs/1505.04597

44
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https://arxiv.org/abs/1505.04597
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U-Net is good for diffusion (at least for now)

« Builds both coarse features (via downsampling) & fine features (via upsampling)
« Skip connections help preserve information
« Convolution is good inductive bias for images

« Easy to setup so that input and output are of the same spatial dimensionality

Later people have developed alternatives, but U-Net dominated the diffusion model

architecture for the beginning years.
Carnegie

Mellon
University
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Re-reparametrization

q(x¢|%0) = N (x¢; vVasxo, (1 — @;)I)
Channeling reparameterization trick:

Xt (X0, €) = /ouXo + /1 — o€ for € ~ N(0,1)

o) = i 0, <= loxs = VI= ea(xe) ) = = (0~ Sealxe))

Equivalently
q(x¢—1|%¢,%0) = N (x4 1;ﬁt(xt:x0)wétl):

v/ a Vor(l — oy ~ 1 —ay_
Oy 15:5 o+ t( t 1) and 51: . Q1

where fi1,(x¢,Xg) = 1 - Xt — O
- t — O ]- — O
J@—1P ar(1-ap Carnegie
o (X, t) = % Xo,0 (X¢, 1) + \/_tl_c—(: = Xt Mellong

University



Re-reparametrization

Equivalently

(I(Xt—1|xtaX0) _N(Xt 1;ﬁt(Xt,X0),BtI)a

where f1,(x,Xo) == 1 —a, 1 —a, Xy
+\/ 1—a¢—
,Ug(xt, t) — “t_ 1ﬁtX09(Xt, t) _I_\/—t(l__at 1)X
At at
Plug in here!
1
L4

VO—1P¢ 1 — oy -
Ot — 1/815 +\/C7t( Qi 1) and [, =

t

=By | 5 [l (e, %0) — g (1, 1) [*| +C
207
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Now you know what a diffusion model is!

In general, we can roughly categorize generative models into the following categories

+ Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM), Diffusion model

 Likelihood Free: Generative adversarial networks (GAN)

al

Random Noise | Sample
€ ~ p(e) — = g(e)

Directly sampling from P(X) is usually hard because they are usuaIIy complicated! But Carnegle

sampling from a simpler distribution (eg. a Gaussian) is easy! Mellon
University



In the next class, we will derive the same diffusion s
model from a different perspective (with new
techniques that we haven’t seen so far)

In general, we can roughly categorize generative models into the following categories

+ Likelihood Based: Autoregressive models, variational autoencoders (VAE),

normalizing flow, energy-based models (EBM), Diffusion model

 Likelihood Free: Generative adversarial networks (GAN), Diffusion model?

/m

Random Noise Sample
€ ~ p(e) =g(€)

Directly sampling from P(X) is usually hard because they are usuaIIy complicated! But Carnegle

sampling from a simpler distribution (eg. a Gaussian) is easy! Mellon
University
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