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Probabilistic modeling is to model the world with uncertainty using probabilities (duh)

« E.g.Thereis a 70% chance that it will snow tomorrow

We usually do probabilistic modeling with

« Random variables: The things we are trying to describe (e.g. tomorrow’s weather)
* (Can be continuous (image) or discrete (text)
* DenotedasXY, Z etc

« Probability Distributions: How things are and how often do they happen (e.g. weather in

Pittsburgh is 50% chance snowy and 50% chance cloudy)

* Denoted asp(X), p(x), P(X) or P(x) %/[%Il'lf(l)(:lgle
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Key concepts in probability theory

Let's say we have two random variables X and Y

« Joint distribution: p(X,Y) (reads“X andY")

Marginal distribution: p(X) and p(Y)
Conditional distribution: p(X|Y)and p(Y|X) (reads “X given Y")

p(X,)Y) _ p(Y|X)p(X)
p(Y) p(Y)

e Prior:p(X) (what | originally believe about X)

Bayes theorem: p(X|Y) =

* Posterior: p(X|Y) (what | believe about X now that I've seen Y)

Independence: Knowing X tells you nothing about Y .
Carnegie

« pX|Y) =pX) and p(X,Y) = p(X)p(Y) Mellon
University



Key concepts in probabilistic modeling

The goal of probabilistic modeling is to learn the probability distributions

We can usually describe the probability distributions through some parameters (6)
« Gaussian: mean (u) and variance (c?)

« Poisson: average rate (1)

« Some complicated distribution: can be parametrized by neural networks (6)

The goal of probabilistic modeling is to learn the probability distributions
=>The goal now is to learn those parameters given data Carnegie

(Note: There's also nonparametric probabilistic modeling, but we won't cover them here) MB]]OI’I
University



Key concepts in probabilistic modeling

The goal of probabilistic modeling is to learn the probability distributions

We can usually describe the probability distributions through some parameters (6)
« Gaussian: mean (u) and variance (c?)

« Poisson: average rate (1)

« Some complicated distribution: can be parametrized by neural networks (6)

The goal now is to learn those parameters given data

We call the probability of data given model parameters as likelihood p(x|6) Carnegie

Mellon

i.e. “if my parameters are accurate, how likely is the data that | observe” University



What is generative modeling?

Jdo et umdritand. |

Say we have some data (X) and some labels associated with the data (Y)
e.g. X are an image of a bedroom, Y is whether this bedroom is luxurious

Discriminative modeling: the goal is to learn p(Y| X) so that we can determine if a

bedroom is luxurious given its image
* Image Xis always given

Generative modeling: the goal is to learn p(X,Y) or p(X), i.e. we are learning what a

(luxurious) bedroom should look like

* Image Xis not given => need to be able to “imagine” bedrooms Carnegie
Mellon
University
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Figure from Stanford CS 236 by Prof. Stefano Ermon




Generative modeling

Given a set of data {x} and some prior knowledge & assumptions

- Data: samples (e.g. images of bedrooms)

« Prior knowledge & assumptions: parametric form, loss function, optimization, etc
We want to learn a probability distribution pg(x) such that

« Generation: If we sample a new datapoint from pg(x), itd look like a “real” sample

(e.g. looks like a real image of bedroom)

- Density estimation: Given an existing datapoint x, we should be able to assign a

probability to it (probability should be high if x [ooks “real”)
Carnegie
- Unsupervised learning: We learn everything by just looking at the data [Mellon
University



How to train your dragon generative models

Given a set of data {x} and some prior knowledge & assumptions

- Data: samples (e.g. images of bedrooms)

« Prior knowledge & assumptions: parametric form, loss function, optimization, etc
We want to learn a probability distribution pg(x) such that

« Generation: If we sample a new datapoint from pg(x), itd look like a “real” sample

(e.g. looks like a real image of bedroom)

- Density estimation: Given an existing datapoint x, we should be able to assign a

probability to it (probability should be high if x [ooks “real”)

Carnegie
- Unsupervised learning: We learn everything by just looking at the data [Mellon
University



Attempt 1: Maximizing likelihood

We call the probability of data given model parameters as likelihood p,(x)

i.e. “if my parameters are accurate, how likely is the data that | observe”

= If my parameters are accurate, then a “real” datapoint should have high likelihood
— We shall maximize the likelihood of existing data under the learned model

Given dataset {x(V}, we want to find

argmaxg Z pe (x®) C .
; arnegie
‘ Mellon
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Attempt 1: Chain rule

Let's consider a single datapoint x for now, and let’s say we know that the datapoint x
is composed by a bunch of smaller elements (e.g. a sentence is composed by a

bunch of tokens, an image is composed by a bunch of pixels)

Say x has K of these elements, we denote each element as x; , then we can

decompose the likelihood of x by chain rule:

Po(x) = pg(x1) Pe(x2lx1) ... pg(xilxg—1, ... x1)

logps(x) = ) logp(xy” 1x%) ,
T Carnegie

Mellon
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Attempt 1: Autoregressive modeling

Given dataset {x®},

L(Q) = — Z Z logpg (xlgi)lxg,z
k

i

== > (ogpy (x
i k

which is cross entropy loss when ground truth labels are one-hot

This is LLM!
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Attempt 2: Latent variables

How a person look is largely determined by their genes
There are a lot of variability of people’s looks, but genes are just combinatorial
However, we cannot directly observe genes

But can we still take into account of the fact that there is a hidden variable that

influence how a person look when modeling human face images?

>N ‘
\ o Carnegie
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Attempt 2: Variational autoencoder (VAE)

Decoder

Reconstruction

We need to do two things
 Maximize the likelihood of data X

« Make sure that the Z we get from encoding X can actually be decoded into g/[all'lnegle
the same X elon
University

Kingma & Welling. “Auto-Encoding Variational Bayes”. ICLR 2014. https://arxiv.org/pdf/1312.6114



https://arxiv.org/pdf/1312.6114
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Attempt 2: Variational autoencoder (VAE)

Reconstruction

We need to do two things
« Maximize the likelihood of data X => maximize log pg (x)

« Make sure that the Z we get from encoding X can actually be decoded into g/[all'lnegle
the same X => minimize the “difference” between q4(z|x) and pg(z|x) etion |
University

Kingma & Welling. “Auto-Encoding Variational Bayes”. ICLR 2014. https://arxiv.org/pdf/1312.6114
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How to measure the “difference” between distributions

We can't directly use geometric distance, it doesn't make sense for distributions!
Instead we use something called probability divergence

A function D need to satisfy the following two conditions in order to be a probability

divergence:

1. D(p||q)>=0

2. D(p||qg)=0ifand onlyif p=q

Note: divergence doesn’t need to be symmetric Carnegle

Mellon
University
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How to measure the “difference” between distributions

We can't directly use geometric distance, it doesn't make sense for distributions!
Instead we use something called probability divergence
There are many different probability divergence out there

One of the most popular ones is called KL divergence

p(x )]
q(x)

Intuitively, it means “if the world distributes like p, how surprise we are going to be if we

Di1(pllq) = Ex-p [log

model it like q Carnegle

Mellon
University
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VAEFE's evidence lower bound (ELBO)

We are trying to
« Maximize the likelihood of data X => maximize log pg (x)

« Make sure that the Zwe get from encoding X can actually be decoded into the

same X => minimize the “difference” between g4 (z|x) and pg(z|x)

= argmaxg g logpg (x) — Di1(q¢ (2|X)[|pe (z]X)) KL regularization

= argmaxy e E, g, (z1x) [108 o (x]2)] — Dy (a4 (z]%)|Ipe (2))
Encode-Decode —_

—

reconstruction loss ‘ ' ' Carnegie

Evidence lower bound (ELBO) %9»1101’1 ity
niversi
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Two ways to derive ELBO (1)

log pe(x) = Eqy (z/x) [log pg(x)]

[ pG(X: Z)
= Ky, (2)x) |log { ”

Po(2|x)
ZX
8 | 9p(2]%) po(alx)
[ po(x, z) d¢ (Z|X)} ]
=E 1 E 1
oo 18 | i ||+ Bom 18 [
Lo s () =D 1.(a5(2lx)|[po (zlx))
(ELBO)
Carnegie
Mellon
- University
Kingma & Welling. “An Introduction to Variational Autoencoders”. 2019. https://arxiv.org/pdf/1906.02691



https://arxiv.org/pdf/1906.02691

19

Two ways to derive ELBO (1)

po (%, 2) [ [%(ZIX)”
log po(x) = Eq, a0 |10 +Eq, (150 |10
820(x) = By (s )l ; [%(ZIX) 2k ® | po(zlx) |
o) =Dic1.(ag(z1%) [P 2lx))

(ELBO)

(x,2)
Ez~q¢(z|x) llog (Ci:(;;))] =F ~qp(z]x) [log Peo (x,z) — log Q¢(Z|x)]

= Eyq, (210|108 Do (2) + logpg (x|2) — log g4 (z|x)]
= Ez~qy(zi0) 108 Do (x12)] — Ezeqy(zx) [log g4 (zlx) — log pg(2)]
= Ezq, (210|108 Do (x]2)] — Di1.(q4(z]x)1pe(2))
Carnegie

Mellon
University



Two ways to derive ELBO (2)

logpg(x) = logf pe(x,2z)dz

q¢(z|x) po(x, z)
10 (2l PO D42 = 10g Eqyzil

= log [

po(x, z)

> E log———=
- "¢<Z"‘>[°gq¢(z|x)

= Ez~q4 (210108 Pe (x12)] — Di1(q(2]12)||pe(2))

|

Stanford CS 236 by Prof. Stefano Ermon

Q¢(Z|x)

]

20

Carnegie
Mellon
University



Attempt 3: Catch me if you can

dicaprio hanks

> S
-

Generator

Tries to make the
fake samples
more and more
realistic so that it
can fool the

discriminator

The true story of a real fake. P

catch me if you can

21

Discriminator

Tries to be better
and better at
distinguishing
fake samples

from real ones

Carnegie
Mellon
University
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Attempt 3: Generative adversarial networks (GAN)

Generator Tries to make the fake samples A generator that directly transform a

more and more realistic so that it sample from the easy distribution to

the complicated target distribution

[ro—

can fool the discriminator

minmax V (D, G) = Eqrpy,()[10g D(@)] + Ez () [log(1 — D(G(2)))

Tries to be better and
better at distinguishing fake
Discriminator samples from real ones Some distribution that is easy to

A discriminator that ~ s@mple from (e.g. Gaussian)

predicts if the input .
. Carnegie
sample if real or fake Mellon

University

Goodfellow et al. “Generative Adversarial Networks”. NeurlPS 2014. https://arxiv.org/pdf/1406.2661
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We will actually use all of these techniques that we
learned today to understand diffusion!

Next class, we will

- Take a deeper dive into VAE and how to actually train & sample from one
«  What's wrong with all of these models

 Intuition behind diffusion models and why it can be better

« How was diffusion developed from all these prior works (especially VAE) back in
the day

« How people made it work by using tricks that they learned from these prior works

(especially VAE) Carnegie
Pree Mellon:
University
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