
Lecture 12: Discrete Diffusion 
& Masked Diffusion

Yutong (Kelly) He

10-799 Diffusion & Flow Matching, Feb 5th, 2026 
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Quiz time!

10 minutes

Closed-book

Pen & Paper

If you don’t want to stay for the lecture, feel free to leave after 

submitting your quiz!
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Housekeeping Announcements

• Homework 4 is out! https://kellyyutonghe.github.io/10799S26/homework/

• Due date: 2/27 Fri, Late Due date: 3/1 Sun

• Poster session:

• PDF submission 2/25 Wed

• Poster Session 2/26 Thur 5 PM tot 7 PM, same classroom

• No class on 2/24 Tue

https://kellyyutonghe.github.io/10799S26/homework/
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So far we have learned about (almost) everything 
about diffusion models for image generation

Fundamentals:

• Denoising diffusion models

• Score-based models

• Flow matching

Advanced topics:

• The design space

• Fast sampling solvers

• Controllable generations

• Text-to-image generations

• Distillation & Self distillation
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So far everything we have learned are about image 
diffusion (i.e. in a continuous space)

Fundamentals:

• Denoising diffusion models for image

• Score-based models for image

• Flow matching for image

Advanced topics:

• The design space for image diffusion

• Fast sampling solvers for continuous ODE

• Controllable generations for image 

diffusion

• Text-to-image generations

• Distillation & Self distillation for image 

diffusion
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How about discrete data?

Fundamentals:

• Denoising diffusion models for image

• Score-based models for image

• Flow matching for image

Advanced topics:

• The design space for image diffusion

• Fast sampling solvers for continuous ODE

• Controllable generations for image 

diffusion

• Text-to-image generations

• Distillation & Self distillation for image 

diffusion
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Well discrete data is very important

Images from https://openai.com/index/introducing-chatgpt-search/, https://news.osu.edu/how-earths-molecules-got-their-handedness/, https://www.ultimate-photo-tips.com/what-is-a-pixel.html 

https://openai.com/index/introducing-chatgpt-search/
https://openai.com/index/introducing-chatgpt-search/
https://openai.com/index/introducing-chatgpt-search/
https://openai.com/index/introducing-chatgpt-search/
https://openai.com/index/introducing-chatgpt-search/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://news.osu.edu/how-earths-molecules-got-their-handedness/
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
https://www.ultimate-photo-tips.com/what-is-a-pixel.html
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How to make diffusion models work on discrete data

Fundamentals:

• Denoising diffusion models for image text, molecules …

• Score-based models for image text, molecules …

• Flow matching for image text, molecules …
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Diffusion models can be viewed in three ways

Continuous Diffusion:

• Denoising diffusion models

 

• Score-based models

 

• Flow matching

=> Adding noise and learning to denoise

=> Learning the score function

=> Learning the velocity

Discrete Diffusion: ?
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Let’s look at them one by one

Continuous Diffusion:

• Denoising diffusion models

 

• Score-based models

 

• Flow matching

=> Adding noise and learning to denoise

=> Learning the score function

=> Learning the velocity
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Diffusion’s way to add noise and denoise

Data 𝑥0

𝑡 = 0

𝑥1

𝑡 = 1

𝑥2

𝑡 = 2

𝑥3

𝑡 = 3

Noise 𝑥4

𝑡 = 4 = 𝑇

Forward process
(adding noise)

Reserve process
(denoising)

Cat stolen from Chieh-Hsin (Jesse) Lai
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What is noise in text 

Identify the “noise” in this tweet:



14
14
14

14

How to add noise in text 

Idea: every 

token has some 

probability of 

getting 

transformed 

into a random 

one 

Image from Spiderman 2002
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How to add noise to text

Let’s say we have vocab {I, love, cat}

Then the sentence “I love cat” can be represented by 3 one-hot vectors:

I: [1,0,0,0,0], love: [0,1,0,0,0], cat: [0,0,1,0,0]

Say we have 𝛽 chance to turn an existing token into a random one in the vocab, then 

this transformation can be represented by this transition matrix:

𝑄 =

1 −
2𝛽

3

𝛽

3

𝛽

3
𝛽

3
1 −

2𝛽

3

𝛽

3
𝛽

3

𝛽

3
1 −

2𝛽

3
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How to add noise to text

Now apply this transition matrix to the third token “cat” to get the categorical 

distribution that we are sampling from next:

𝑥cat𝑄 = 0 0 1

1 −
2𝛽

3

𝛽

3

𝛽

3
𝛽

3
1 −

2𝛽

3

𝛽

3
𝛽

3

𝛽

3
1 −

2𝛽

3

= [
𝛽

3
 

𝛽

3
 1 −

2𝛽

3
]

Probability of getting 

transitioned into “I”

Probability of getting 

transitioned into “love”

Probability of staying 

at “cat”
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How to add noise to text

Now apply this transition matrix to the third token “cat” to get the categorical 

distribution that we are sampling from next:

𝑥cat𝑄 = 0 0 1

1 −
2𝛽

3

𝛽

3

𝛽

3
𝛽

3
1 −

2𝛽

3

𝛽

3
𝛽

3

𝛽

3
1 −

2𝛽

3

= [
𝛽

3
 

𝛽

3
 1 −

2𝛽

3
]

The categorical probability of the transformed token is
𝑥transformed|𝑥cat ∼  Cat(𝑝 = 𝑥cat𝑄)

We can stack all three tokens up and independently apply Q to each and get
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How to add noise to text

We can stack all three tokens up to get :

𝑥 =
1 0 0
0 1 0
0 0 1

and independently apply Q to each and get

𝑥𝑄 =
1 0 0
0 1 0
0 0 1

1 −
2𝛽

3

𝛽

3

𝛽

3
𝛽

3
1 −

2𝛽

3

𝛽

3
𝛽

3

𝛽

3
1 −

2𝛽

3

=

1 −
2𝛽

3

𝛽

3

𝛽

3
𝛽

3
1 −

2𝛽

3

𝛽

3
𝛽

3

𝛽

3
1 −

2𝛽

3

The categorical probability of the transformed token is
𝑥′|𝑥 ∼  Cat(𝑝 = 𝑥𝑄)
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Now let’s build the diffusion forward process with this

Say we have clean data 𝑥0, and at time t we have 𝛽 chance to turn an existing token 

into a random one in the vocab, then this transformation can be represented by this 

transition matrix

𝑄𝑡 =

1 −
2𝛽𝑡

3

𝛽𝑡

3

𝛽𝑡

3
𝛽𝑡

3
1 −

2𝛽𝑡

3

𝛽𝑡

3
𝛽𝑡

3

𝛽𝑡

3
1 −

2𝛽𝑡

3

The categorical probability of the transformed token is
𝑥𝑡|𝑥𝑡−1 ∼  Cat(𝑝 = 𝑥𝑡−1𝑄𝑡)
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Now let’s build the diffusion forward process with this

The categorical probability of the transformed token is

𝑥𝑡|𝑥𝑡−1 ∼  Cat(𝑝 = 𝑥𝑡−1𝑄𝑡)

By induction, we can get the categorical probability of transforming from t-2 to t

𝑥𝑡|𝑥𝑡−2 ∼  Cat(𝑝 = 𝑥𝑡−2𝑄𝑡−1𝑄𝑡)

…

Then we can also get the probability transforming from 0 to t

𝑥𝑡|𝑥0 ∼  Cat(𝑝 = 𝑥0
ത𝑄𝑡)

Where ത𝑄𝑡 = 𝑄1𝑄2 … 𝑄𝑡
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How to train the reverse process
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Remember how in DDPM we have our ELBO

Pretty much only 

need to deal with this
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Let’s get our training target

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 =
𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥0 𝑞 𝑥𝑡−1 𝑥0

𝑞(𝑥𝑡|𝑥0)

=
𝑞 𝑥𝑡 𝑥𝑡−1 𝑞 𝑥𝑡−1 𝑥0

𝑞(𝑥𝑡|𝑥0)

=
(𝑥𝑡−1𝑄𝑡𝑥𝑡

⊤)𝑥0
ത𝑄𝑡−1

𝑥0
ത𝑄𝑡

= 𝑥𝑡−1

𝑥𝑡𝑄𝑡
⊤⨀𝑥0

ത𝑄𝑡−1

𝑥0
ത𝑄𝑡
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Remember how in DDPM we have our ELBO

Better parameterization 

of this?
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Reparameterization trick in discrete diffusion

𝑝 𝑥𝑡−1 𝑥𝑡 = σ𝑥0
𝑝 𝑥𝑡−1, 𝑥0 𝑥𝑡 = σ𝑥0

𝑝 𝑥𝑡−1, 𝑥𝑡 𝑥0  𝑝 𝑥0 𝑥𝑡

=> 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ≈  σ𝑥0
𝑞 𝑥𝑡−1, 𝑥𝑡 𝑥0  𝑝𝜃 𝑥0 𝑥𝑡

Only need to predict the logits 

of the final clean output 

Pro tips: You can also add another cross entropy loss to directly predict from t 

to 0: 
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Putting everything together, we got discrete 
denoising diffusion models (D3PM)
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Let’s look at them one by one

Continuous Diffusion:

• Denoising diffusion models

 

• Score-based models

 

• Flow matching

=> Adding noise and learning to denoise

=> Learning the score function

=> Learning the velocity

Discrete Diffusion:

• Discrete denoising diffusion models

 

• ?

 

• ?

=> Categorical noise
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The continuous score v.s. the “discrete score”

Continuous score: “Discrete score”:

I

love cat
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The continuous score v.s. the “discrete score”

Continuous score:

“Compare my 

likelihood with my 
neighbors, if they 
have higher 

likelihood than me, 
I flow to them”
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The continuous score v.s. the “discrete score”

Continuous score: “Discrete score”:

I

love cat

“Compare my 

likelihood with my 
neighbors, if they 
have higher 

likelihood than me, 
I jump to them”

P(x=“I”)

P(x=“cat”)

“discrete score” 

is a comparison 
between p(x=“I”) 
and p(x=“cat”)

Concrete score: 𝑠𝜃 𝑥, 𝑡 𝑦 ≈
𝑝𝑡 𝑦

𝑝𝑡(𝑥)

Meng et al. Concrete Score Matching: Generalized Score Matching for Discrete Data. NeurIPS 2022. https://arxiv.org/pdf/2211.00802

https://arxiv.org/pdf/2211.00802
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The continuous time setting

In continuous score-based models, we need to represent the sample evolution in a 

continuous time SDE/ODE

=> How to use continuous time to represent these discrete jumps?
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Continuous time Markov Chain (CTMC)

Let’s still use 𝑄𝑡 to represent the transition matrix at time t, and the probability to 

jump from state x to the next infinitesimal step can be written as

                               𝑝𝑡+𝑑𝑡 𝑦 𝑥𝑡 = ቊ
𝑄𝑡 𝑥, 𝑦 𝑑𝑡

1 − σ𝑧≠𝑥 𝑄𝑡 𝑥, 𝑧 𝑑𝑡

 We can also write this continuous time evolution into an ODE

𝑑𝑝𝑡

𝑑𝑡
= 𝑄𝑡𝑝𝑡

In fact, going in reverse

Campell et al. A Continuous Time Framework for Discrete Denoising Models. NeurIPS 2022. https://arxiv.org/pdf/2205.14987

for 𝑥 ≠ 𝑦

for 𝑥 = 𝑦 (i.e. 𝑄𝑡 𝑥, 𝑥 = − σ𝑧≠𝑥 𝑄𝑡 𝑥, 𝑧 )

Concrete score

Reverse transition

https://arxiv.org/pdf/2205.14987
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Concrete score matching

Then now all we need to do is to match to the concrete score (or do we?)

Meng et al. Concrete Score Matching: Generalized Score Matching for Discrete Data. NeurIPS 2022. https://arxiv.org/pdf/2211.00802

https://arxiv.org/pdf/2211.00802
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Problems with naïve concrete score matching

• The probability ratio should be always 

positive but CSM does not enforce that 

=> -0.5 may look ok in loss function but 

it’s actually super wrong

• Ratio explodes when p(x) is small

• MSE doesn’t do well for relative error
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Let’s derive a better loss

ത𝑄𝑡 “𝐼”, ”𝑐𝑎𝑡”

= 𝑄𝑡 “𝑐𝑎𝑡”, “𝐼”
𝑝𝑡 “𝑐𝑎𝑡”

𝑝𝑡(“𝐼”)

rate = base rate*ratio

I

love cat
Can be represented 

by a Poisson
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Let’s derive a better loss

Let 𝑝data 𝑘 =  Poisson 𝑘; 𝑟 = 𝑒−𝑟 𝑟𝑘

𝑘!
, 𝑝𝜃 𝑘 =  Poisson 𝑘; 𝑠𝜃 = 𝑒−𝑠𝜃

𝑠𝜃
𝑘

𝑘!

Then the KL between the two distribution is

𝐷KL(𝑝data| 𝑝𝜃 = ෍

𝑘

𝑝data 𝑘 log
𝑝data 𝑘

𝑝𝜃 𝑘
=  ෍

𝑘

𝑝data 𝑘 log
𝑒−𝑟 𝑟𝑘

𝑘!

𝑒−𝑠𝜃
𝑠𝜃

𝑘

𝑘!

=  ෍

𝑘

𝑝data 𝑘 −𝑟 + 𝑠𝜃 + 𝑘(log 𝑟 − log 𝑠𝜃)

= −𝑟 + 𝑠𝜃 ෍

𝑘

𝑝data 𝑘 + (log 𝑟 − log 𝑠𝜃) ෍

𝑘

𝑝data 𝑘 𝑘

= −𝑟 + 𝑠𝜃 + (log 𝑟 − log 𝑠𝜃)𝑟
= 𝑠𝜃 − 𝑟 log 𝑠𝜃
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Score entropy loss

Lou et al. Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution. ICML 2024. https://arxiv.org/pdf/2310.16834

• Log form -> everything is always positive 

• Deals with crazy ratios better

• Distribution divergence rather than absolute error

https://arxiv.org/pdf/2310.16834
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We can also apply the reparameterization trick here

Because 𝑝 𝑥𝑡 = σ𝑥0
𝑝 𝑥𝑡 𝑥0 𝑝0(𝑥0) we can have

Now you have score entropy discrete diffusion (SEDD)!
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Let’s look at them one by one

Continuous Diffusion:

• Denoising diffusion models

 

• Score-based models

 

• Flow matching

=> Adding noise and learning to denoise

=> Learning the score function

=> Learning the velocity

Discrete Diffusion:

• Discrete denoising diffusion models

 

• Score entropy discrete diffusion

 

• ?

=> Categorical noise

=> Concrete score & score entropy
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Notice how right now all our models are for generic 
transition matrix

Continuous Diffusion:

• Denoising diffusion models

 

• Score-based models

 

• Flow matching

=> Adding noise and learning to denoise

=> Learning the score function

=> Learning the velocity

Discrete Diffusion:

• Discrete denoising diffusion models

 

• Score entropy discrete diffusion

 

• ?

=> Categorical noise

=> Concrete score & score entropy
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What would be the easiest transition matrix to have



43
43
43

43

How about we can only mask/unmask tokens

I

love
mask

forward

reverse
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Then the transition matrix is also simple

𝑄𝑡 =
1 − 𝛽𝑡 0 𝛽𝑡

0 1 − 𝛽𝑡 𝛽𝑡

0 0 1

Transition rate to 

<mask>

Transition rate to 

stay unmasked
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Actually, it can even be simpler

Because we are essentially only trying to interpolate between a clean data sample 

and the full mask, we can literally formulate our forward process like so

𝑞𝑡 𝑥𝑡 𝑥0 =  Cat(𝛼𝑡𝑥0 + 1 − 𝛼𝑡 𝑚)

Or we can write it as

𝑞𝑡 𝑥𝑡 𝑥0 = ቐ
𝛼𝑡 ,  if 𝑥𝑡 = 𝑥0

1 − 𝛼𝑡 ,  if 𝑥𝑡 = 𝑚
0,  otherwise

And 𝑞𝑡 𝑥𝑡 = 𝑥0 𝑥𝑡−1 = 𝑥0 =
𝛼𝑡

𝛼𝑡−1
, 𝑞𝑡 𝑥𝑡 = 𝑚 𝑥𝑡−1 = 𝑥0 = 1 −

𝛼𝑡

𝛼𝑡−1

𝑞𝑡 𝑥𝑡 = 𝑚 𝑥𝑡−1 = 𝑚 = 1

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurIPS 2024.
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Actually, it can even be simpler

What’s even nicer is that now the super complicated 𝑞𝑡 𝑥𝑡−1 𝑥𝑡 , 𝑥0  also becomes easy

• If 𝑥𝑡 = 𝑥0, 𝑥𝑡−1 = 𝑥0 deterministically (because we can’t unmask after masking)

• If 𝑥𝑡 = 𝑚, then 𝑞𝑡 𝑥𝑡−1 = 𝑥0 𝑥𝑡 = 𝑚, 𝑥0 =
𝑞 𝑥𝑡 = 𝑚 𝑥𝑡−1 = 𝑥0 𝑞 𝑥𝑡−1 = 𝑥0 𝑥0

𝑞(𝑥𝑡=𝑚|𝑥0)

=
1 − 𝛼𝑡/𝛼𝑡−1 𝛼𝑡−1

1 − 𝛼𝑡
=

𝛼𝑡−1 − 𝛼𝑡

1 − 𝛼𝑡

𝑞𝑡 𝑥𝑡−1 = 𝑚 𝑥𝑡 = 𝑚, 𝑥0 = 1 −
𝛼𝑡−1 − 𝛼𝑡

1 − 𝛼𝑡
=

1 − 𝛼𝑡−1

1 − 𝛼𝑡

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurIPS 2024. https://arxiv.org/pdf/2406.07524

https://arxiv.org/pdf/2406.07524
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Actually, it can even be simpler

𝑞𝑡 𝑥𝑡−1 𝑥𝑡 , 𝑥0 =

Cat(𝑥0) ,  if 𝑥𝑡 = 𝑥0

1 − 𝛼𝑡−1

1 − 𝛼𝑡
,  if 𝑥𝑡 = 𝑚, 𝑥𝑡−1 = 𝑚

𝛼𝑡−1 − 𝛼𝑡

1 − 𝛼𝑡
, if 𝑥𝑡 = 𝑚, 𝑥𝑡−1 = 𝑥0

Again, because 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ≈  σ𝑥0
𝑞 𝑥𝑡−1, 𝑥𝑡 𝑥0  𝑝𝜃 𝑥0 𝑥𝑡

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = 𝑚 =

1 − 𝛼𝑡−1

1 − 𝛼𝑡
,  if 𝑥𝑡 = 𝑚, 𝑥𝑡−1 = 𝑚

𝛼𝑡−1 − 𝛼𝑡

1 − 𝛼𝑡
𝑝𝜃(𝑥0|𝑥𝑡), if 𝑥𝑡 = 𝑚, 𝑥𝑡−1 = 𝑥0

Only need to predict the logits 

of the final clean output 

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurIPS 2024. https://arxiv.org/pdf/2406.07524

https://arxiv.org/pdf/2406.07524
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The objective function is also super simple

Cross entropy between the predicted clean sample and the data

Now you have masked diffusion language model!

Continuous limit of 
𝛼𝑡−1−𝛼𝑡

1−𝛼𝑡

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurIPS 2024. https://arxiv.org/pdf/2406.07524

https://arxiv.org/pdf/2406.07524
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MLDM works pretty well!

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurIPS 2024. https://arxiv.org/pdf/2406.07524

https://arxiv.org/pdf/2406.07524
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MLDM was also co-discovered by two concurrent works

• Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurIPS 
2024

• Shit et al. Simplified and Generalized Masked Diffusion for Discrete Data. NeurIPS 
2024

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurIPS 2024. https://arxiv.org/pdf/2406.07524

https://arxiv.org/pdf/2406.07524
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People have scaled it up!

Large language diffusion with masking (LLaDA)

Nie et al. Large Language Diffusion Models. NeurIPS 2025. https://arxiv.org/pdf/2502.09992

https://arxiv.org/pdf/2502.09992
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LLaDA works comparably to LLaMA!

Nie et al. Large Language Diffusion Models. NeurIPS 2025. https://arxiv.org/pdf/2502.09992

https://arxiv.org/pdf/2502.09992
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Let’s look at them one by one

Continuous Diffusion:

• Denoising diffusion models

 

• Score-based models

 

• Flow matching

=> Adding noise and learning to denoise

=> Learning the score function

=> Learning the velocity

Discrete Diffusion:

• Discrete denoising diffusion models

 

• Score entropy discrete diffusion

 

• ?

• Relationships/Interpolation with LLM?

=> Categorical noise

=> Concrete score & score entropy
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