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Lecture 12: Discrete Diffusion
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Quiz time!

10 minutes
Closed-book

Pen & Paper

If you don't want to stay for the lecture, feel free to leave after

submitting your quiz!
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Housekeeping Announcements

« Homework 4 is out! https://kellyyutonghe.github.io/10799526/homework/

e Due date: 2/27 Fri, Late Due date: 3/1 Sun

 Poster session:
e PDF submission 2/25 Wed

e Poster Session 2/26 Thur 5 PM tot 7 PM, same classroom

« Noclasson 2/24 Tue
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https://kellyyutonghe.github.io/10799S26/homework/

So far we have learned about (almost) everything
about diffusion models for image generation

Fundamentals: Advanced topics:
Denoising diffusion models « The design space
Score-based models « Fast sampling solvers
Flow matching « Controllable generations

Text-to-image generations

Distillation & Self distillation
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So far everything we have learned are about image
diffusion (i.e. in a continuous space)

Fundamentals: Advanced topics:

« Denoising diffusion models for image + The design space for image diffusion

« Score-based models for image Fast sampling solvers for continuous ODE

« Flow matching for image « Controllable generations for image

diffusion
« Text-to-image generations

 Distillation & Self distillation for image
diffusion Carnegie

Mellon
University
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« Flow matching for image « Controllable generations for image
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How about discrete data?

Fundamentals:

Denoising diffusion models for image
Score-based models for image

Flow matching for image

Advanced topics:

The design space for image diffusion
Fast sampling solvers for continuous ODE

Controllable generations for image

diffusion
Text-to-image generations

Distillation & Self distillation for image

diffusion Carnegie
Mellon
University



Well discrete data is very important

Nessage ChatGPT

Carnegie
Mellon
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How to make diffusion models work on discrete data

e -

é(f,_,_«,»v’ > <.,s,-—4\\,~_x.;\\‘~‘
Fundamentals: ,A
f#”ﬁ ‘ ';,;2%7
« Denoising diffusion models forimage text, molecules ... / ' '
[ :‘z“.‘
« Score-based models forimage text, molecules ... s;‘ r

* Flow matching ferimage text, molecules ... | W ~
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Diffusion models can be viewed in three ways

Continuous Diffusion: Discrete Diffusion: ?
« Denoising diffusion models
=> Adding noise and learning to denoise
« Score-based models
=> Learning the score function
« Flow matching

=> Learning the velocity

10
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Let's look at them one by one

Continuous Diffusion:
« Denoising diffusion models
=> Adding noise and learning to denoise
« Score-based models
=> Learning the score function
« Flow matching

=> Learning the velocity

Carnegie
Mellon
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Diffusion’s way to add noise and denoise

Forward process
(adding noise)

X3 Noise x,
=3 t=4=T

Reserve process
(denoising)

Carnegie
Mellon
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Cat stolen from Chieh-Hsin (Jesse) Lai



What is noise in text

|dentify the “noise” in this tweet:

Andrej Karpathy & A -

'aﬁf @karpathy

There's a new kind of coding | call "vibe coding", where you fuI
the vibes, embrace exponentials, and forget that the code even exists.

It's possible because the LLMs (e.g. Cursor Composer w Sonnet) are
getting too good. Also | just talk to Composer with SuperWhisper so |
barely even touch the keyboard. | ask for the dumbest things like
"decrease the padding on the sidebar by half" because I'm too lazy to
find it. | "Accept All" always, | don't read the diffs anymore. When | get
error messages | just copy paste them in with no comment, usually that
fixes it. The code grows beyond my usual comprehension, I'd have to
really read through it for a while. Sometimes the LLMs can't fixa bug so |
just work around it or ask for random changes until it goes away. It's not
too bad for throwaway weekend projects, but still quite amusing. I'm
building a project or webapp, but it's not really coding - | just see stuff,
say stuff, run stuff, and copy paste stuff, and it mostly works.

6:17 PM - Feb 2, 2025 - 6.7M Views

O 1.4k 159K Q 33K [ 17 R

Andrej Karpathy

kv’ @karpathy 13
There's a new kind of coding | call "vibe coding", where

you fully give in to the vibes, embrac¢ and forget

that the code even exisis—{'s possiblesecause the

LLMs (e.g. Cursor Co or w Sonnet) are getting

too good. Also | just talk to Composer with
SuperWhisper so | barely even touch the

| ask

for the du ings like "decrease the padding on the
sidebar by half" because I'm too lazy to find it. | "Accept
All" always, | don't read the diffs anymore. When | get

errg essages | just copy paste them in with no
comment, us that fixes it. The code grows beyond
my usual conf€®prehension, I'd have to really read

through it for awhile. Sometimes the can't fixa
bug so | just work around it or ask faof n ntil it
goes away. It's not too bad for thro ay weekend

projects, but still quite amusing. I'm building a project or
webaut it's not really coding - | just see stuff, say

stuff, romrstuff, and copy paste stuff, and it mostly
works.
6:17 PM - Feb 2, 2025
Carnegie
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How to add noise in text

£ - Andrej Karpathy &

'W @karpathy

There's a new kind ofcedimg+ea
the vibes, embrac
It's possible because ThetHs(e.g. Cursor Composer w Sonnet) are
getting too good. Also | just talk to Composer with SuperWhisper so |
barely even touch the keyboard. | ask for the dumbest things like
"decrease the padding on the sidebar by half" because I'm too lazy to
find it. | "Accept All" always, | don't read the diffs anymore. When | get
error messages | just copy paste them in with no comment, usually that
fixes it. The code grows beyond my usual comprehension, I'd have to
really read through it for a while. Sometimes the LLMs can't fixa bug so |
just work around it or ask for random changes until it goes away. It's not
too bad for throwaway weekend projects, but still quite amusing. I'm
building a project or webapp, but it's not really coding - | just see stuff,
say stuff, run stuff, and copy paste stuff, and it mostly works.

6:17 PM - Feb 2, 2025 - 6.7M Views

O 1.4k 159K
% |

Image from Spiderman 2002

Q 33k
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[ 17
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There's a new kind of coding | call "vibe coding", where
you fully give in to the vibes, embrgg and forget
that the code even exisisgligs™possiblebecause the

or w Sonnet) are getting

Idea: every

token has some
| ask

ings like "decrease the padding on the Probability of

for the dunt

sidebar by haif" because I'm too lazy to find it. | "Accept i

All" always, | don't read the diffs anymore. When | get geting

errg essages | just copy paste them in with no transformed

comment, usually that fixes it. The code grows beyond

my usual conf€®grehension, I'd have to really read into a random

through it for awhile. Sometimes the can't fixa

bug so | just work around it or ask ol@ ntil it ne

goes away. It's not too bad for thro JWay weekend

projects, but still quite amusing. I'm building a project or

webaut it's not really coding - | just see stuff, say

stuff, romrstuff, and copy paste stuff, and it mostly

works.

6:17 PM - Feb 2, 2025 C .
arnegle

5.9K Retweets  1.4K Quote Tweets 33K Likes Mellon

o . o 2 University



15

How to add noise to text

Let's say we have vocab {l, love, cat}
Then the sentence “I love cat” can be represented by 3 one-hot vectors:
1: [1,0,0,0,0], love: [0,1,0,0,0], cat: [0,0,1,0,0]

Say we have B chance to turn an existing token into a random one in the vocab, then

this transformation can be represented by this transition matrix:

% B
3 3 3
oo| BT B
; 0 Carnegie
2
é g 1- ?ﬂ Mellon

University



16

How to add noise to text

Now apply this transition matrix to the third token “cat” to get the categorical

distribution that we are sampling from next:

26 B

Xeat@ = [0 0 1] 1——

Probability of staying
Probability of getting Probability of getting at “cat”
transitioned into “love” Carnegie

Mellon
University
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transitioned into



How to add noise to text

Now apply this transition matrix to the third token “cat” to get the categorical

distribution that we are sampling from next:

,_ B B
3 3 3 ,
XcatQ@ = [0 0 1] g 1—% g =[§ g 1_?18]
p B2
3 3 3 |

The categorical probability of the transformed token is
Xtransformed|Xcat ~ Cat(p = X¢atQ)

We can stack all three tokens up and independently appl to each and get .
P P y apply Q g Carnegle
Mellon

University
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How to add noise to text

We can stack all three tokens up to get :

1 0 0
x=[0 1 O‘
0 0 1
and independently apply Q to each and get
2 B B | [,_2% B B
1 0 0 3 3 3 3 3 3
a-lo 1ol £ % L L%
0 0 1 3 3 3 3 3 3
BB 2| BB 2
L3 3 34 L 3 3 3
The categorical probability of the transformed token is
x'|x ~ Cat(p = xQ) Carnegie
Mellon

University
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Now let’s build the diffusion forward process with this

Say we have clean data x,, and at time t we have g chance to turn an existing token
into a random one in the vocab, then this transformation can be represented by this

transition matrix

2 B B
B : 32[3 [)’3
t t t
L T )
oo B 2
3 3 3 -
The categorical probability of the transformed token is
Xe|xg—1 ~ Cat(p = x¢-10Q¢) Carnegie

Mellon
University
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Now let’s build the diffusion forward process with this

The categorical probability of the transformed token is
Xe|xe—1 ~ Cat(p = x¢—10Q¢)
By induction, we can get the categorical probability of transforming from t-2 to t

Xe|xe—p ~ Cat(p = xt—2Q¢-1Q¢)

Then we can also get the probability transforming from O to t

x¢|xg ~ Cat(p = x0Q;)

Where Q, = 0,0, ... Q, E/[all'lnegie
elon
University



How to train the reverse process

21
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Remember how in DDPM we have our ELBO

22

polxica ) ~logpo(abs) |

E, [PKL (g(xr|x0) || p(x7)) + > DKL
E; t>1 Li_1

Pretty much only

need to deal with this

4
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Let’s get our training target

q(xelxe—1,x0) q(xp—1]x0)

100-1lxe, %0) = q(xelxo)

_ qCxelxe—12g9(xe—11%0)
q(xe1x0) [

_ (xt_thx;)xO Qt—l
xOQt

xtQtTG)ont—1

XoQ¢

= Xt-1

23
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Remember how in DDPM we have our ELBO

24

Eq[PKL(Q(XﬂXo) | p(xr)) + 3 Dice(alxe—1lxe, %o log po (xo|x1) ]

t>1

E; L:1

Better parameterization
of this?

4
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Reparameterization trick in discrete diffusion

p(xe—q1lx) = Zxo p (X1, Xolx) = Zxo p(xe—1, X x0) plxolxe)

=>pg(xe—1lxy) = Zxo Cl(xt—1»xt|x0)

Only need to predict the logits

of the final clean output

Pro tips: You can also add another cross entropy loss to directly predict from t

0 0! Eg(z0) Eq(a:|@o) |- log po(xo|x:)].

25
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Putting everything together, we got discrete
denoising diffusion models (D3PM)

Structured Denoising Diffusion Models in Discrete
State-Spaces

Jacob Austin; Daniel D. Johnson; Jonathan Ho, Daniel Tarlow & Rianne van den Berg'
Google Research, Brain Team
{jaaustin,ddjohnson, jonathanho,dtarlow,riannevdberg}@google.com

Carnegie
Mellon
University
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Let's look at them one by one

Continuous Diffusion: Discrete Diffusion:
« Denoising diffusion models » Discrete denoising diffusion models
=> Adding noise and learning to denoise => Categorical noise
« Score-based models « ?
=> Learning the score function
« Flow matching . 7
=> Learning the velocity
Carnegie

Mellon
University
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Let's look at them one by one

Continuous Diffusion: Discrete Diffusion:
« Denoising diffusion models » Discrete denoising diffusion models
=> Adding noise and learning to denoise => Categorical noise
« Score-based models  ?
=> Learning the score function
« Flow matching . 7
=> Learning the velocity
Carnegie

Mellon
University



29

“Discrete score”:

egie
on

1

Carn
Mel
University

—>{ Cat

Continuous score:

The continuous score v.s. the “discrete score”

love
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The continuous score v.s. the “discrete score”

Continuous score:

NATSTASATATA A A M A A A 4L : Ucompare my

\ SATRTATATA A A A M A A 4 o

kS ke i . 3 likelihood with my

e -~ neighbors, if they
e % o D, have higher
likelihood than me,
| flow to them”

-

L A S o

, A A o w o oa
A h Ak b o a————-—

A el e - - -
Rl et

W W e ——

Al e

L T T R o e e a S

A A A A

A T T T T N N N

!
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The continuous score v.s. the “discrete score”

Continuous score: “Discrete score”:
—yn
Seeeenoiii il “Compare my P(x="1")
§ A . - likelihood with my
R I .- neighbors, if they “discrete score”
AR SR have higher is @ comparison
BL S0 LLSEES PP IR likelihood than me, between p(x="1")
Vvt feees e | jump to them” and p(x="cat”)
Sitor g b LA E B
S El S WAL S VL .
e WA RN
e b EYAA "ot
sty 10 11 P(x="cat")
S X ALY
g
§ RS N e e
pe(y) Carnegie
Concrete score: sy(x,t), =
o(x,t)y (%) Mellon
- University

Meng et al. Concrete Score Matching: Generalized Score Matching for Discrete Data. NeurlPS 2022. https://arxiv.org/pdf/2211.00802



https://arxiv.org/pdf/2211.00802
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The continuous time setting

In continuous score-based models, we need to represent the sample evolution in a

continuous time SDE/ODE

=> How to use continuous time to represent these discrete jumps?

7 | Carnegie
: Mellon
University
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Continuous time Markov Chain (CTMCQC)

Let's still use Q; to represent the transition matrix at time t, and the probability to

jump from state x to the next infinitesimal step can be written as

B Q:(x,y)dt forx =y
pt+dt(y|xt) N {1 — Zz:tx Qt(x, Z)dt forx = y (i.e. Qt(x, X) = —Zz;tx Qt(x; Z))

— We can also write this continuous time evolution into an ODE

Concrete score

L dpr_¢
In fact, going in reverse
. Carnegie
Reverse transition Mellong
- University

Campell et al. A Continuous Time Framework for Discrete Denoising Models. NeurlPS 2022. https://arxiv.org/pdf/2205.14987



https://arxiv.org/pdf/2205.14987
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Concrete score matching

Then now all we need to do is to match to the concrete score (or do we?)

Concrete Score Matching. Meng et al. (2022) generalizes
the standard Fisher divergence in score matching, learning

sg(z,t) =~ [%] o with concrete score matching:
1 pe(y)
‘ ‘ \ ECSM - _E:IINp Z (Sﬁ(mta t)y - (4)
| 2 t
| e pe(x)
—
! c J Carnegie
I Mellon

University
Meng et al. Concrete Score Matching: Generalized Score Matching for Discrete Data. NeurlPS 2022. https://arxiv.org/pdf/2211.00802



https://arxiv.org/pdf/2211.00802
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Problems with naive concrete score matching

« The probability ratio should be always
positive but CSM does not enforce that
=>-0.5 may look ok in loss function but

it's actually super wrong
« Ratio explodes when p(x) is small

« MSE doesn’t do well for relative error

Concrete Score Matching. Meng et al. (2022) generalizes
the standard Fisher divergence in score matching, learning

se(x,t) = [p—t(y)

] with concrete score matching:
pi(x) y#zx

1
ECSM = §Em~pt |:

Z (Sa(mtat)y — M) 2] 4)

oy pi(z)

Carnegie
Mellon
University



Let's derive a better loss

36

ét(uln, "Cat")
pt(ucatn)
— Q (ucat»’ HI") —
‘ pe("I")

rate = base rate*ratio

\

Can be represented
by a Poisson

Carnegie
Mellon
University
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Let's derive a better loss

k k
Let pgata(k) = Poisson(k;r) =e™" % pe(k) = Poisson(k; sg) = e—SQSkL!

Then the KL between the two distribution is

k
Pdata(k) e T
Dict(Baatal Po) = ) Paatall)10g "% 57 = Zpdatam oz :
- Po

L
k!
= Z Paatalk) (= + 50) + k(logT — log 59)

= (=7 +59) Z Paata(l6) + (log T = log 5o) Z PaaeallO)

— | —1
( r+ sg) + (logr ogsg)r Carnegle

= 5o~ logsg Mellon
University
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Score entropy loss

pdata(y)
Emwpdata yNZm 89($)y o mlog Sﬂ(w)y

— Z Zse Ti)y — Pdata(y) log so(z:i),

y~z; Ddata ($z)

« Log form -> everything is always positive
« Deals with crazy ratios better

« Distribution divergence rather than absolute error Carnegle
Mellon

University
Lou et al. Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution. ICML 2024. https://arxiv.org/pdf/2310.16834



https://arxiv.org/pdf/2310.16834
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We can also apply the reparameterization trick here

Because p(x;) = X, p(x¢lx0)p0(x0) We can have

Theorem 3.4 (Denoising Score Entropy). Suppose p is a
perturbation of a base density py by a transition kernel
p(:|), ie p(z) = }_, p(z|zo)po(Z0). The score entropy
Lsg is equivalent (up to a constant independent of 8) to the
denoising score entropy Lpsg is

Z Wey (se(m)y B p(y|To) log Sg(m)y)]

E
i L = p(z|zo)
(7)

Now you have score entropy discrete diffusion (SEDD)!

Carnegie
Mellon
University
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Let's look at them one by one

Continuous Diffusion: Discrete Diffusion:
« Denoising diffusion models » Discrete denoising diffusion models

=> Adding noise and learning to denoise => Categorical noise

« Score-based models « Score entropy discrete diffusion
=> Learning the score function => Concrete score & score entropy
« Flow matching « ?
=> Learning the velocity
Carnegie
Mellon

University
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Notice how right now all our models are for generic
transition matrix

Continuous Diffusion: Discrete Diffusion:
« Denoising diffusion models » Discrete denoising diffusion models

=> Adding noise and learning to denoise => Categorical noise

« Score-based models « Score entropy discrete diffusion
=> Learning the score function => Concrete score & score entropy
« Flow matching « ?
=> Learning the velocity
Carnegie
Mellon

University
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What would be the easiest transition matrix to have

Carnegie
Mellon
University



How about we can only mask/unmask tokens

forward

love
Q AGask

43
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Then the transition matrix is also simple

Transition rate to Transition rate to

stay unmasked <mask>

44
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Actually, it can even be simpler

Because we are essentially only trying to interpolate between a clean data sample

and the full mask, we can literally formulate our forward process like so
q:(x¢lxo) = Cat(arxo + (1 — ap)m)

Or we can write it as

A, lf Xt = Xp
qe(xelxo) =41 —ay, ifx, =m
0, otherwise
ag a;
And q.(x; = xolxe—1 = x¢) = a—er(xt =mlx;_g =x) =1-
t—1 at_l
Qt(xt =mlx;_1 = m) =1 Carnegie
Mellon
- University

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurIPS 2024.
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Actually, it can even be simpler

What's even nicer is that now the super complicated q;(x;—_1|x;, xo) also becomes easy

o If x; = xg, x;—1 = x, deterministically (because we can’'t unmask after masking)

q(xe = mlxi_q = Xg)a(Xe—1 = Xg|Xo)
q(x¢=m|xo)

o Ifx; =m,then q,(x;_1 = xplx; = m, x0) =

(1—ap/ar_a_4 e S
1 - at 1 - at

g —ay  1—a; 4

qe(xi_q =mlx, =m,xy) =1— I —a, = | —a,
Carnegie
Mellon
University

|

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurlPS 2024. https.//arxiv.org/pdf/2406.07524



https://arxiv.org/pdf/2406.07524
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Actually, it can even be simpler

( Cat(x,), if x, = x,
1—-aq ¢
EE— ifx,=mx;_,=m
qt(Xe—1lxe,x0) = { 1—a,
Ae—1 — Ay
, ifx; =m,x;_1 = xg

Only need to predict the logits

of the final clean output

.

, ifx; =m,x;_=am

At—1 — : _ _
T Cpoolr)  ifxe = mxes =X
L at
% |

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurIPS 2024. https://arxiv.org/pdf/2406.07524

Po(xe—qlxy = m) =<

Carnegie
Mellon
University



https://arxiv.org/pdf/2406.07524
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The objective function is also super simple

. _— ar—1—CA¢
Continuous limit of ———

/ 1-ag

Cross entropy between the predicted clean sample and the data

Now you have masked diffusion language model! &%ﬁ(‘)‘f‘e

University

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurlPS 2024. https.//arxiv.org/pdf/2406.07524



https://arxiv.org/pdf/2406.07524
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MLDM works pretty well!

Diffusion Training: Average of unmasking losses Masked LM
e Masking rate is »  ® Objective is a
not fixed
1 2 L-1 L
Xq Xy .. X9 Xq e Objective is a of MLM losses
t t ) Improved
0 ‘ ® Admits fast implementation
t=1 \ " relative to previous
masked diffusion
PPL A
: 118.6
Expectation over
i Mask diffusion for Mask data 775
masking rates [[ as ]J [ ][ ][[ as ]][ ] 63.8
F—o AR: %28 230
209 F--rFr~r="9-==-=I-F -1 -ﬁ---
Input: x Masked | diffusion for discrete data o W 4
&° R o O \%
M TS W

AL 11\./6 le

Mellon
University

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurlPS 2024. https.//arxiv.org/pdf/2406.07524



https://arxiv.org/pdf/2406.07524
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MLDM was also co-discovered by two concurrent works

« Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurlIPS
2024

« Shit et al. Simplified and Generalized Masked Diffusion for Discrete Data. NeurlPS
2024

said

Carnegie
Mellon
University

|

Sahoo et al. Simple and Effective Masked Diffusion Language Models. NeurlPS 2024. https.//arxiv.org/pdf/2406.07524
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People have scaled it up!

L
1 , :
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Nie et al. Large Language Diffusion Models. NeurlIPS 2025. https://arxiv.org/pdf/2502.09992
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LLaDA works comparably to LLaMA!

Mathematics
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Nie et al. Large Language Diffusion Models. NeurlIPS 2025. https://arxiv.org/pdf/2502.09992
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Let's look at them one by one

Continuous Diffusion: Discrete Diffusion:
« Denoising diffusion models » Discrete denoising diffusion models

=> Adding noise and learning to denoise => Categorical noise

« Score-based models « Score entropy discrete diffusion
=> Learning the score function => Concrete score & score entropy
« Flow matching « ?
=> Learning the velocity ? « Relationships/Interpolation with LLM?
Carnegie
Mellon

University
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