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Quiz time!

10 minutes
Closed-book

Pen & Paper

If you don't want to stay for the lecture, feel free to leave after

submitting your quiz!
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Housekeeping Announcements

« Next class we will have Lingi (Alex) Zhou from Luma Al to give us a guest lecture
* Will have pizza for in-person

« Homework 3 is out! https://kellyyutonghe.github.io/10799526/homework/

e Due date: 2/15 Sun, Late Due date; 2/17 Mon

« Start early and finish early if possible! This way you’ll have more time for

HW 4
e Poster PDF submission 2/25 Wed, Poster Session 2/26 Thur

* Noclasson 2/24 Tue
Carnegie
 AWS credit allocation poll in Discord Mellon
University


https://kellyyutonghe.github.io/10799S26/homework/
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Previously we have learned a bunch of sampling
methot make inference faster

N / 4 predicted

noise )
noise
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Previously we have learned a bunch of sampling
methods to make inference faster

Simple ¢
Fast/step

Euler

1 NFE/step
1st order
50-100 steps

Generic ODE
solvers

- Optimized

Fast/quality
Midpoint Heun DPM-Solver
2 NFE/step 2 NFE/step 1-2 NFE/step
2nd order 2nd order 1st-3rd order
25-50 steps 25-50 steps 10-25 steps

| | |
| |
| |
Generic 0DE Diffusion-specific
solver

solvers
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What else can we do to accelerate inference?
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Is it possible to train a model such that it also
take less time for inference?
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Suppose we already have a pre-trained diffusion
model, what is the simplest way to train another
model for faster sampling?
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What if we just try to have 1 step in the new model
to match with 2 steps in the original diffusion model

New

New
model

model

TimeT t t—At t—2At t—3At t—4At Time 0

2X speedup from DDIM! Vet

University
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What if we just try to have 1 step in the new model
to match with 2 steps in the original diffusion model

v

New

New
model

model

| : —
Time T t t—At t—2At t—3At t—4At ¢ Time0

More speed up from this new model?  Melion

University
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What if we just try to have 1 step in another new

model to match with 2 steps in the first new model
New model v2

TimeT t t—At t—2At t—3At t—4At Time 0

. . L. . C i
Now you have progressive distillation!  elion

University



Progressive distillation

Algorithm 1 Standard diffusion training

Algorithm 2 Progressive distillation

Require: Model X4 (z) to be trained
Require: Data set D
Require: Loss weight function w()

while not converged do

x~D > Sample data
t ~UJ[0,1] > Sample time
e~ N(0,I) > Sample noise

Z; = X + ore > Add noise to data

x=x b Clean data is target for X

e = logla?/o?] > log-SNR

Lo = w(A\)||X — %o(z¢)||2 > Loss

0 0 —~yVgLg > Optimization
end while

Require
Require
Require
Require

Trained teacher model %X, (z;)
Data set D

Loss weight function w()
Student sampling steps NV

for K iterations do

0+n

> Init student from teacher
while not converged do
x~D
t=1i/N, i~ Cat[l,2,...,N]
e~ N(0,I)

Zi = 4+ X + O€

# 2 steps of DDIM with teacher
t'=¢t-05/N, t"=t—-1/N

Zy = oztrf(n(zt) + ‘;—Z’(zt — atfc,,(zt))

zy = o Xy(2y) + 257 (20 — aw Xy (20))

> Teacher % target

Zyn 7(0’tn /O't)zt !
oy —(ow o )o

A = loglo? /o7

Lo = w(h)||% — %o (z0) 3

i:

0« 06— ’yVeLg
end while
n 0 > Student becomes next teacher

N + N/2 > Halve number of sampling steps
end for

t =

|

0

Z3/4 = f(z1;

212 = f(23/42

2174 = f(21/2;

X = f(zl/41"

b

L

g

Distillation

12

€ €.

v >x = f(z16)

b4 £

X X
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Progressive distillation

Why are we only matching 2 steps?  Nielios "

University
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Why can’t we directly match 4 steps with the
student model?

New
model

| I ’ =~
Time T t t—At t—2At t—3At t—4At K 7 Time0
| Carnegie

Mellon
University
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Actually, why can’t we directly match t steps so that
we can directly get to the clean image from time t?

= New model

) N : )
Time T t t—At t—2At t—3At t—4At i Time0

Carnegie
Mellon
University
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Training a student model to match 4 steps in teacher

New
model

TimeT t t—At t—2At t—3At t—4At Time 0

You’'ll need to take 4 forward passes at each training step! E/[%Il'ﬂ)‘:lgie
University
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Training a student to match arbitrary t steps in teacher

= New model

’”‘/\\ //,\\'
NG (\, L

Time T t t—At  t—2At t—3At t—4At x\ Time 0
You’ll need to take t forward passes at each training. step Carnegie
=> expensive and hard to parallelize Mellon

University



Let’s take another look at this problem

New model

18

\ /\ X0
TimeT t t—At t—2At t—3At t—4At Time 0
Carnegie
Mellon
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We can rephrase what we want from this angle

So what we really want is a new model that is self-consistent:

For any two points on the same PF-ODE trajectory produced by the pre-trained

diffusion models, the new model should predict the same final clean data output

fo(xe, t) = fo(xs,s) forall t,s € [0,1]

0 |

But how do we make sure that the final outputs Carnegie

' ' Mellon
look like real images University

|
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What happens when tis close to 0

\ New model
o \ ///—\Q "o

»

TimeT t t—At t—2At t—3At t—4At Time 0

Carnegie
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We can rephrase what we want from this angle

So what we really want is a new model that is self-consistent:

For any two points on the same PF-ODE trajectory produced by the pre-trained

diffusion models, the new model should predict the same final clean data output
fo(x, t) = fo(xs,s) forall t,s € [0,1]

In addition, the new model also need to satisfy the boundary condition:
fo(x0,0) = xg
(In practice, we do fy(xs,0) = x5 for small enough & to avoid singularity)

. Carnegie
Now we have consistency models! Mellon

- University
Song et al. “Consistency Models”. ICML 2023. https://arxiv.org/pdf/2303.01469



https://arxiv.org/pdf/2303.01469
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How to train a consistency model

feasible
New model —

More than 1 forward

TimeT t t—At t—2At t—3At t—4At Time 0

Carnegie
Mellon
University
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How to train a consistency model

So what we really want is a new model that is self-consistent:

For any two points on the same PF-ODE trajectory produced by the pre-trained

diffusion models, the new model should predict the same final clean data output
fo(x:, t) = fo(x,,s) forall t,s € [0,1]

Let's denote the pre-trained diffusion teacher as ¢ and randomly sample a t

From x,, we first solve one step with teacher to get ff’_At = x; + At Solver(x;, t; ¢)

Then we match the f, prediction from x; and ff’_m

L(6; ¢) = EJA(t)d{fp(x,t), Stopgrad(fy (a?f’_ Aot — At)))] g/[%ll'f(l)%gie
N University

Loss weighting Distance, can be L2 or perceptual distance
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How to train a consistency model

In addition, the new model also need to satisfy the boundary condition:
fH(xor O) = fH(xOI O)

(In practice, we do fy(xs,0) = x5 for small enough & to avoid singularity)

From EDM, we can have preconditioning
DQ(E;O') = Cskip(g) T+ Cout(a) Fy L (O-) Z, cIlOiSC(O-))s

/ N T—

Predicts clean data x0  Skip connection weight Network output weight Trained network

So as long as we have cg;,(6) = 1, c,t(8) = 0, we satisfy boundary conditionCarnegie
Mellon
University
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Can we train a consistency model without a pre-
trained diffusion model?

‘ ::":\u‘-‘“ «;_.,?;,

<« — Carnegie
Mellon
University
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How to train a consistency model from scratch

So what we really want is a new model that is self-consistent:

For any two points on the same NDE trajectory-precucec-py-the-pre-tratred
—-chiffestor-medels, the new model should predict the same final clean data output

fo(x, t) = fo(xs,s) forall t,s € [0,1]
Let's first produce a pair of data x; and x;_,, from the same ODE trajectory

The easiest way is to fix the same noise z, and have x; = xy + tz, x;_as = xo + (t — At)z

Then we match the f, prediction from x; and x;_x;

L(6; p) = E[A(t)d(fy(x,, t), Stopgrad(fg(xs_pas t — AL)))]
Carnegie

Mellon
University

Song et al. “Consistency Models”. ICML 2023. https://arxiv.org/pdf/2303.01469



https://arxiv.org/pdf/2303.01469

What problems does consistency model have

New model

TimeT t t—At t—2At t—3At t-—A4At

27

Time 0

Carnegie
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University
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What problems does consistency model have

« The model is only trained to predict the clean data x,
* =>the model doesn't naturally do well with multi-step sampling
« =>difficult to tradeoff quality v.s. speed (i.e. can't scale at inference time)

« Completely lost the ability to calculate exact loglikelihood

Carnegie
Mellon
University
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How about instead of learning to jump to the end,
we learn to jump from anywhere to anywhere

New model

TimeT t t—At t—2At t—3At t—4At Time 0

Carnegie
Mellon
University
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How about instead of learning to jump to the end,
we learn to jump from anywhere to anywhere

New model

TimeT t u S r j Time 0
- : , Carnegie
This is a consistency trajectory model! Mellon

Kim et al. “Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion”. ICLR 2024. https://arxiv.org/pdf/2310.02279


https://arxiv.org/pdf/2310.02279

31

How to train a consistency trajectory model

Match the two
—=—==_X0 predictions

/ i \ \ * xt_>s_>0
XT i xt—>S

New model

X0 I\/Iatch
i : /
New model e
with stop R
TimeT t u gradient S r j Time 0
Carnegie
Mellon
- University

Kim et al. “Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion”. ICLR 2024. https://arxiv.org/pdf/2310.02279


https://arxiv.org/pdf/2310.02279
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New "boundary” condition

Because we don't always match to the end point now, we need to change the

boundary condition into a “tangent” condition

In other words, when we are trying to jump from t to t, we should match the score

function

In other words, we should just add a normal diffusion/score matching loss

This also gives us exact

loglikelih k! Carnegie
oglikelinood bac Mellong

University



How to train a consistency trajectory model

The loss function is basically
Loss = CTM loss + Score matching loss + GAN loss

—

Adding GAN loss gives a lot
of boost in FID!

33
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How to train a consistency trajectory model from scratch

Match the two
e — - xO predlctlons

R
/\ \ * xt_>s_>0
XT : ~ V

New model

X0 I\/Iatch
new model
scorewith |~ _ _ W' i _ -
. stop | Newmodel | T == "' - ==
gradient ! withstop | | ‘
TimeT t u gradient S r j Time 0
Carnegie
Mellon
- University

Kim et al. “Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion”. ICLR 2024. https://arxiv.org/pdf/2310.02279


https://arxiv.org/pdf/2310.02279

Why does this work?

35
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Turns out as per usual, physics people already have
answers for us long time ago

. Sai Ravi Teja G 1/22/26, 6:05PM
lore accurate (edited)

Get lost, Max
Planck. Get lost
physics major.

I'm switching to
a CS major. Al is
the future. The
future is now, old man

| have to
learn the
Fokker—Planck
equation and
Brownian motion
to understand
the diffusion model

— Carnegie
8 Mellor

University

% |
Screenshot from our Discord server
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There is this notion in math/physics called flow map

Chapter 5

.
Flow Maps and Dynamical
Systems
Main concepts: In this chapter we introduce the concepts of continuous and discrete dynamical

systems on phase space. Keywords are: classical mechanics, phase space, vector field, linear
systems, flow maps, dynamical systems

Figure 5.1: A solar system is well modelled by classical mechanics. (source: Wikimedia Commons)

|

Screenshot from https://webspace.science.uu.nl/~frank011/Classes/numwisk/ch5. pdf

Carnegie
Mellon
University


https://webspace.science.uu.nl/~frank011/Classes/numwisk/ch5.pdf

38

Flow maps (the flow version of CTM)

Method
Consistency Model Flow Map Flow Matching

— - ‘ D
pi—— A 5 =4

85X, ) [&.7.5)

Objective

df,-(x,, t, s—=>1 dx
VoEy [sign(t —5) - f(x,1,5)" - %} ﬁ VoE,, [l | vy(x,, 1) — d—t'| |§]

0

dg,-(x,, 1) =
VoE, [gg(x,, n'- %] é

Definition 2.1 (Flow Map). Given an ODE dx; = v(z, t)dt, the flow map ® : R? x [0,1]2 — R?
is the solution operator that maps any state at time £ to its corresponding state at time s:

®(x¢,t,8) = ¢ + / v(Tr, T)dT = 24 (2.5) Carnegie
t Mellon

Sabour et al. Align Your Flow: Scaling Continuous-Time Flow Map Distillation. NeurlPS 2025. https://arxiv.org/pdf/2506.14603 U . .
niversity

Ai et al. Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models. ICLR 2026. https://arxiv.org/pdf/2512.02636



https://arxiv.org/pdf/2512.02636
https://arxiv.org/pdf/2506.14603
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How to build a valid flow map

Let u(x, t,s) denotes the flow map displacement from x attto s, v(x,t) is the

instantaneous velocity, ®(x,t,s) = x + (t —s)u(x, t,s) = x, is the flow map jump
1. You need to satisfy the tangent condition: u(x,t,t) = v(x,t)
2. You need to also satisfy one of the following three conditions:

1) Lagrangian condition: 9,®(x,t,s) = u(®(x,t,s),s,s)

2) Eulerian condition: 0,®(x,t,s) + V,®(x,t,s)u(x,t,t) =0

3) Semigroup condition: ®(x,t,s) = ®(d(x,t,7),71,5)
Carnegie

Mellon

University

|

Boffi et al. “How to build a consistency model: Learning flow maps via self-distillation”. NeurlPS 2025. https://arxiv.org/pdf/2505.18825


https://arxiv.org/pdf/2505.18825
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Analogy: a rubber duck flowing down the river

Suppose | am a magician that can teleport a rubber duck in a particular river, in other
words, for any duck flowing down this particular river, | can teleport the duck so that
the duck’s location in the river will be the same as if the duck take the normal river

flow down

Mellon
University

\ Carnegie

N
Image generated by Nano Banana
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Lagrangian condition: follow a rubber duck in the flow

THE JUMP Helper: “Poof! You're
(Flow Map X5¢)  Leeeeeees ol e here at time t."
™ Magic Jump ..., )
/;’g’..‘ ~ P __\
e . == S e
. e T e

THE OBEDIENCE TEST
(Lagrangian Check)

/ Duck's Path
=-=-9» Water's Push (v;)

Inspector checks: "Did the duck follow the water’s push exactly? YES.”

N
Image generated by Nano Banana

The instantaneous
flow ==The
infinitesimally
small flow map
jump for this duck
right here

Carnegie
Mellon
University
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Lagrangian condition: follow a rubber duck in the flow

New model
X7 /\ %o
of
TimeT t s s+ dt Time 0
Carnegie
Mellon

University
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Eulerian: no matter what part of the rive you start
jumping the duck, it will always end up at the same
place if you make the jump

The Eulerian Condition: Consistency Check.

% Observer 1
Observer 2
ﬁ\ (live z) % (Time s+As)
\«l«\’\
o e =
(Time s) ;/\\\\ (Time s+As) \:::>—-__>@

Starting early and drifting vs. starting late at the drifted spot:
Both paths must lead to the same end. Carnegle

Mellon
University

N
Image generated by Nano Banana
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Eulerian: the total derivative w.r.t. tis 0

d
0, P(x,t,s)+V, d(x, t,s)ulx, t, t) =—>(x,t,s) =0

dt
The Eulerian Condition: Consistency Check.
9,
(‘ﬁ\ O(b_:renr: 2; : Observer 2
N (Time s+As) In other words,
S changing the
CES ot e 4\,\\/\\/—\ starting time doesn't
g;g;’;) S s e — matter as long as

~ _ (Time s+As) B the duck is following

L e
\_\ o End the same flow
S

(Time t)

Starting early and drifting vs. starting late at the drifted spot:

Both paths must lead to the same end. Carﬂegle
Mellon
University



Eulerian Instantiation: MeanFlow

N\ t=05 t=0.7 t=1.0

The MeanFlow Identity. To have a formulation amenable to training, we rewrite Eq. (3) as:

(t —r)u(zg,r,t) = / v(z,, 7)dT.

Now we differentiate both sides with respect to t, treating r as independent of t. This leads to:

dt

(C)

¢
%(t —r)u(z,rt) = i/ v(zp, T)dT = u(ze, 7, t) + (t — T)%u(zt,r, t) = v(z,t), (5)

where the manipulation of the left hand side employs the product rule and the right hand side uses the

fundamental theorem of calculus’. Rearranging terms, we obtain the identity:

u(zt7T7 t) = U(th) _(t - T) %u(zt,r, t)
——

average vel. instant. vel. time derivative

|

Geng et al. Mean Flows for One-step Generative Modeling. NeurlPS 2025. https://arxiv.org/pdf/2505.13447

(6)

45

Carnegie
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University


https://arxiv.org/pdf/2505.13447
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MeanFlow is an Eulerian flow map

Eulerian condition: ,®(x,t,s) + V,®(x,t,s)ulx, t,t) =0

(s — t)%u(mt, t,s) +v(zs, t) = u(xe, t, s)
(s — t) (Bru(zs, t, 8) + Vi, u(ze, t, s)v(xs, ) + v(xs, t) = u(z, t, 8)
—u(x,t,8) + (s — t)Opu(xe, t,s) + (I N(s — )V, u(zy, t, 8))v(ze, t) =0
O(ze + (s — t)u(ze, t,8)) + Vi, (2 N (s — Y)u(ze, t, 8))v(xe,t) =0

01 ®(xt,t,8) + Va, P(ze\N, S)u(ze, t,t) =0

%im u(xe, t, t) = v(xg, t)
—S

Carnegie
Mellon
University
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CTM is Eulerian too

Match the two
—=—==_X0 predictions

\ \:xt_)s_)o

New model

X xt
T > X0 Match

néw model \

store with W ’/’
stop | New model A i

gradient ! withstop | ' ‘

TimeT t u gradient S r j Time 0
Score matching loss guarantees the tangent condition g/[all'f(l)‘;gle
University

Kim et al. “Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion”. ICLR 2024. https://arxiv.org/pdf/2310.02279


https://arxiv.org/pdf/2310.02279
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Semigroup: making two jumps is the same as
making one large jump

The Semigroup Condition: The Relay Race.

Handoff
(Time u)

Start = S

(Time s) \‘~~\\ @
e P S 2l = ety >
\_\——\ WS End
(Time t)

\'—\
The “handoff” in the middle doesn’t change the doesn't change
the final destination. Two short legs equal one long frip. Carnegie

Mellon
University
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Semigroup: making two jumps is the same as
making one large jump

New model
o / \/\\j /\ X0
TimeT t u s Time 0
Carnegie
Mellon

University



Frans et al. One Step Diffusion via Shortcut Models. ICLR 2025. https://arxiv.org/pdf/2410.12557

50

Semigroup Instantiation: Shortcut models

- Algorithm 1 Shortcut Model Training
A = A v (1, 1) while not converged do
f X zo ~N(0,I), z1 ~ D, (d,t) ~ p(d,t)
A e — (1 —zg+txy Noise data point

—V ~a

a) Diffusion / Flow Matching for first k£ batch elements do . Ma ke sure th eta nge nt
Starget < T1 — Zo Flow-matching target

condition holds for sampling

a1 d ~—0
X ii(% t5) hor other batch elements do

sy 4 sg(xy,t,d) First small step .

Trrd — Ty + 50 d Follow ODE Make sure the semigroup
b) Shortcut Models Strd  So(Trig,t+d,d) Second small step . .

Starget — Stopgrad (s + si+a)/2  Self-consistency target property holds for likelihood

\0 — V9||30(93't7t72d) — 3target||2

Tangent condition: u(x, t,t) = v(x,t)

Semigroup condition: ®(x,t,s) = ®(Pd(x,t,r),1,5) Carnegie
Mellon
University



https://arxiv.org/pdf/2410.12557

Are flow maps perfect now?

51

Carnegie
Mellon
University
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Flow maps only accelerate the sampling part!
Likelihood evaluation is still very very slow!!

Method

Consistency Model Flow Map Flow Matching
5 T ——— =iy
s s : [
soin R e s=0 i R s>t j o
2:’::‘/:(, \ 2 \/ \ 2 ViR 1) \
g,(x,, 1) (X, 1,5)
Objective

V4E,, [sign(t—s)-fg(x,, t,s)T - ol (=, ts)] ﬁ VoEy, [llva(x - 'Il%]

s=0

dgy-(x,, 1)
VoEx, I:ge(xt’ - %] ‘%

Definition 2.1 (Flow Map). Given an ODE dx; = v(zy,t)dt, the flow map ® : R x [0,1]? — R?
is the solution operator that maps any state at time £ to its corresponding state at time s:

B(ze,t,5) = w4 + / oz, 7)dr =z, 25  Carnegie
t Mellon

Sabour et al. Align Your Flow: Scaling Continuous-Time Flow Map Distillation. NeurlPS 2025. https://arxiv.org/pdf/2506.14603 U
niversity

|

Ai et al. Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models. ICLR 2026. https://arxiv.org/pdf/2512.02636



https://arxiv.org/pdf/2512.02636
https://arxiv.org/pdf/2506.14603
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Why flow maps fail to calculate likelihood fast

Method

Consistency Model Flow Map Flow Matching
) / e =
\—// s —0 . —— j< /
2 'i‘// \ 2 \/ \ 2 V(X 7) | \

8o(X;, 1) f(x,.1,5)

Definition 2.1 (Flow Map). Given an ODE dx; = v(x4,t)dt, the flow map ® : R? x [0,1]? — R¢
is the solution operator that maps any state at time ¢ to its corresponding state at time s:

D(x4,t,8) = x4 —I—/ v(z,,T)dT = T4 (2.5)
t
It only learns to jump in the sampling space and forgets about the

likelihood!
Calculating the likelihood still needs solving the instantaneous divergence Carnegie
Mellon

ODE ical int ti ith 100-1000 st !
(numerical integration wi steps) UnlverSIty

Sabour et al. Align Your Flow: Scaling Continuous-Time Flow Map Distillation. NeurlPS 2025. https://arxiv.org/pdf/2506.14603


https://arxiv.org/pdf/2506.14603
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Actually ...
Definition 2.1 (Flow Map). Given an ODE dz; = v(z¢, t)dt, the flow map ® : R? x [0,1]? — R¢
is the solution operator that maps any state at time ¢ to its corresponding state at time s:

D(xz4,t,8) = x4 —I—/ v(z,, T)dT = T4 (2.5)
t

It only learns to jump in the sampling space and forgets about the likelihood!

Calculating the likelihood still needs solving the instantaneous divergence ODE
(numerical integration with 100-1000 steps)!

, . Sampling => integrating some ODE => can learn
‘o~ )

) O jumps via flow maps
Likelihood calculation => integrating some ODE =>
E— can learn jumps via flow maps as well???
(> Carnegie
W Mellon

|

Ai et al. Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models. ICLR 2026. https://arxiv.org/pdf/2512.02636

University


https://arxiv.org/pdf/2512.02636
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Actually ...

Definition 2.1 (Flow Map). Given an ODE dz; = v(x:, t)dt, the flow map ® : R¢ x [0, 1] — R¢
is the solution operator that maps any state at time ¢ to its corresponding state at time s:

D(xz4,t,8) = x4 —I—/ v(z,, T)dT = T4 (2.5)
t

i Jounan] = |- oty
dt |logpee(2:)| — | —div(vg(2y, t)).
Sampling => integrating some ODE => can learn jumps via flow maps
Likelihood => integrating some ODE => can learn jumps via flow maps
A coupled system of ODE => can learn to jump together ???
Carnegie

Mellon
University

Ai et al. Joint Distillation for Fast Likelihood Evaluation and Sampling in Flow-based Models. ICLR 2026. https://arxiv.org/pdf/2512.02636
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F2D2: joint flow maps for both sampling and likelihood

Let z; = logp:(x¢) € Rand 2, = log p..9(2:) € R denote the log likelihood, we can then separately
parametrize the flow maps for the two subsystems in Eq. (2.3) as

Q.0 (T1,t,8) = Tt + (s — t)ugy (24, t, 5),
(I)Z;Bz (:f:ta é}t: ta 5) = 215 + (3 - t)DGZ (ita ta 3)
Here ug, (24,1, s) still estimates the average velocity, and Dy, (z:,t, s) approximates the average

divergence Dy, (z4,t,8) ~ ——= [ div(v(z,,7))dr along the true trajectory between ¢ and s.

(3.2)

Therefore, denoting the joint state at time ¢ as y; = (¢, 2¢) ', we can then parametrize the joint flow
map using shared parameter 6 as

. [ Dx (84,1, 8 . .
By aliintis) = | gy b | =+ (5= Ol

e (3.3)
fo(de,t,s) = g% ((:;Z tss))]
Carnegie
Mellon
- University
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Training an F2D2 model

£F2D2 . EVM + E 9) + Edw(g + EI‘)(Q\
Make sure the tangent Make sure the flow map Make sure the Make sure the flow
condition holds for sampling  condition holds for sampling tangent condition map condition
\ ’ holds for likelihood holds for likelihood

Y \
Make sure it's a flow '

Make sure it's a flow

map for samplin
P pling map for likelihood

Carnegie
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University
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https://arxiv.org/pdf/2512.02636

58

We are now in the realm of the state-of-the-arts

« 2/3(Tue): How to use diffusion/flow models for robotics, control & decision
making (Max Simchowitz, MLD Prof.)

 2/5 (Thur): Text-to-image models and SOTA techniques

« 2/10 (Tue): How to sample from diffusion/flow models with a single step (Quiz 5)
« Distillation
* Consistency models
* Flow maps

« 2/12 (Thur): Real-time generation techniques for video (Lingi (Alex) Zhou, Luma

Al) (Pizza for people who come in person) E/[%Il.lr(l)(:lgle

University



Talk from Linqi (Alex) Zhou

Lingi (Alex) Zhou is a research scientist at
Luma Al. Previously he was a PhD
student at Stanford University advised by
Prof. Stefano Ermon. He cofounded start-
up Apparate Labs which was later

acquired by Luma Al.
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Talk from Linqi (Alex) Zhou

Title: Towards Efficient Inference-Time Scaling without Distillation

Abstract: Most generative modeling methods for continuous domains struggle to
simultaneously deliver high sample quality, stable training, and efficient inference. Diffusion
models achieve state-of-the-art fidelity, but their iterative sampling is computationally expensive.
A common strategy to accelerate inference is to distill a pretrained diffusion model into a faster
sampler. However, this adds an additional training stage and introduces further instability and
operational complexity. In contrast, we introduce a series of efforts towards designing principled
pre-training algorithms that directly enable one- or few-step generation, while achieving higher
sample quality than diffusion models. Carnegie

Mellon
University
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